

Amendment Notice # 2

Licence Number	L8308/2008/2					
Licensee	CITIC Pacific Mining Management Pty Ltd					
ACN	119 578 371					
Registered business address	45 St Georges Terrace					
	PERTH WA 6000					
Date of amendment	9 June 2017					
Prescribed Premises	Category 5: Processing or beneficiation of metallic or non-metallic ore					
	Category 6: Mine dewatering discharge					
	Category 12: Screening, etc. of material					
	Category 52: Electric power generation					
	Category 54: Sewage facility					
	Category 57: Used tyre storage (general)					
	Category 64: Class II putrescible landfill site					
	Category 73: Bulk storage of chemicals, etc.					
Premises	Sino Iron Project Mine Site					
	Mining Tenements M08/123, M08/124, M08/125, M08/264, M08/265, M08/266, G08/54 and L08/126					
	MARDIE WA 6714					

Amendment

The Department of Environment Regulation (DER) has amended the above licence in accordance with section 59 of the *Environmental Protection Act 1986* as set out in this Amendment Notice.

Date signed: 9 June 2017

Alana Kidd Manager Licensing – Resource Industries

an officer delegated under section 20 of the Environmental Protection Act 1986 (WA)

Amendment Notice

This Notice is issued under section 59 of the *Environmental Protection Act 1986* (EP Act) to amend the licence issued under the EP Act for a prescribed premises as set out below. This notice of amendment is given under section 59B(9) of the EP Act.

Amendment Description

Controlled Surface Water Discharges

On 1 December 2016, CITIC submitted an application to DER for an amendment to Licence L8308/2008/2. This Amendment Notice is to assess and include six controlled surface water discharge points to the licence. These discharge points are to be within Edwards Creek and tributaries of Edwards and DuBoulay Creeks, to allow the discharge of excess water to the environment, to maintain safe operating conditions or freeboard onsite. This contingency will provide the Licensee with the ability to pre-plan controlled discharges of excess water associated with uncontrollable events (extreme rainfall/ cyclones) which can affect catchment areas onsite. Controlled discharges will only be considered when other water storage management options have been exhausted.

Rainfall catchment areas onsite include the mine pit, concentrator and Tailings Storage Facility (TSF) and process dams/ponds. The water containment structures and catchment surface areas along with capacities and optimal freeboard are shown in Table 1.

Location	Location		Catchment / Surface Area (m²)	Safe Operating Freeboard (m)
Enviro Dam	Settlement Dam	140,000	1,700,000 (1.7km ²)	0.5m
	Environment Dam	213,000	_	0.5m
Raw Water	Dam	200,000	N/A	0.5m
TSF		1,425,000	7,350,000 (7.35km ²)	0.3m
Mine Pit Shell		N/A	2,500,000 (2.5km ²)	N/A

Table 1. Water Containment Structures and Rainfall Catchment Areas

If water levels in these structures exceed the nominated safe operating conditions or freeboard, options will be investigated to use the water or transfer the water to another structure, with controlled discharge to the environment only considered once these options have been exhausted.

Pipelines and discharge points

The Licensee will install a pipeline to each of six controlled surface water discharge locations with minimal disturbance (no additional clearing required). Trenches will only be installed in areas of mining infrastructure or where flood management is required. Controlled surface water discharge points will be constructed in a manner to minimise the discharge rate so that erosion and scouring is minimised. Multiple discharge points will be used to spread the flow and a layer of riprap will be installed to protect the receiving water bank from erosion. A map of the controlled surface water discharge points in shown in the "Amendments" section of this document.

Water Quality

Baseline water quality monitoring has been conducted along Edwards and DuBoulay Creeks during rainfall events, indicating that natural flow is fresh upstream. As the water moves downstream into the tidal zone of the Fortescue River and flood plain salinity increases notably. Containment structure water quality monitoring has been conducted at the TSF Staging Dam and Environment Dam. Results of this monitoring are shown in Tables 2 and 3 with locations for surface water (SW), DuBoulay Creek (DB) and Edwards Creek (EC) are shown in Figure 1.

Table 2. Baseline monitoring

	Monitoring	Locations – F	Refer to Figur	e 3						
	SW01	SW03	SW04	SW06	SW07	DB1	DB2	DB3	EC1	EC2
	16.03.2009	16.03.2009	16.03.2009	16.03.2009	16.03.2009	14.08.2014	14.08.2014	14.08.2014	07.07.2016	07.07.2016
рН	10.1	7.91	8.48	8.44	8.15	8.05	8.06	8.03	7.68	7.52
TDS (mg/L)	257	17900	418	6240	21700	39100	51400	55300	80	61
TSS (mg/L	<1	36	24	12	36	484	10		-	-
Dissolved Oxygen (mg/L)	-	-	-	-	-	9.9	10.1	10.1	-	-
Total Nitrogen (mg/L)	0.3	<2.5	0.6	<0.5	1.2	<0.1	<0.1	<0.1	-	-
Total Phosphorus (mg/L)	0.03	<0.25	0.05	0.09	<0.10	<0.02	<0.05	<0.05	-	-
Boron (mg/L)	-	-	-	-	-	4.50	5.49	5.69	0.06	<0.05
Copper (mg/L)	0.002	0.004	0.004	0.003	<0.020	0.016	0.019	0.020	0.002	0.001
Nickel (mg/L)	<0.001	<0.005	0.003	0.001	<0.010	0.015	0.015	0.016	0.001	<0.001
Zinc (mg/L)	<0.005	0.012	0.017	0.056	<0.050	<0.050	<0.050	<0.050	0.040	<0.005

Table 3. Containment structure monitoring

	Crusher Slots		Enviro Dam - Environment	TSF Staging Dam	TSF Staging Dam* (Laboratory Analysis)	TSF Staging Dam* (Field Analysis)
	29.01.2016	04.07.2016	01.09.2014	01.09.2014	Average 20	14-2016
рН	7.69	7.46	8.81	8.60	8.6	8.3
TDS (mg/L)	16700	9260	2190	1160	1590.0	2016.8
TSS (mg/L)	<5	-	<5	28	-	-
Dissolved Oxygen (mg/L)	-	-	-	-	-	8.70
Total Nitrogen (mg/L)	13.3	-	4.8	7.0	-	-
Total Phosphorus (mg/L)	0.31	-	0.07	<0.05	-	-
Boron (mg/L)	0.962	0.34	1.38	1.02	-	-
Copper (mg/L)	0.0024	0.004	<0.001	0.001	0.001	-
Nickel (mg/L)	0.0015	0.005	0.001	0.002	0.0025	-
Zinc (mg/L)	0.01	0.009	<0.005	<0.005	<0.005	-
Actual Fibres (Fibres/mL)	-	-	981	<1,000	-	-

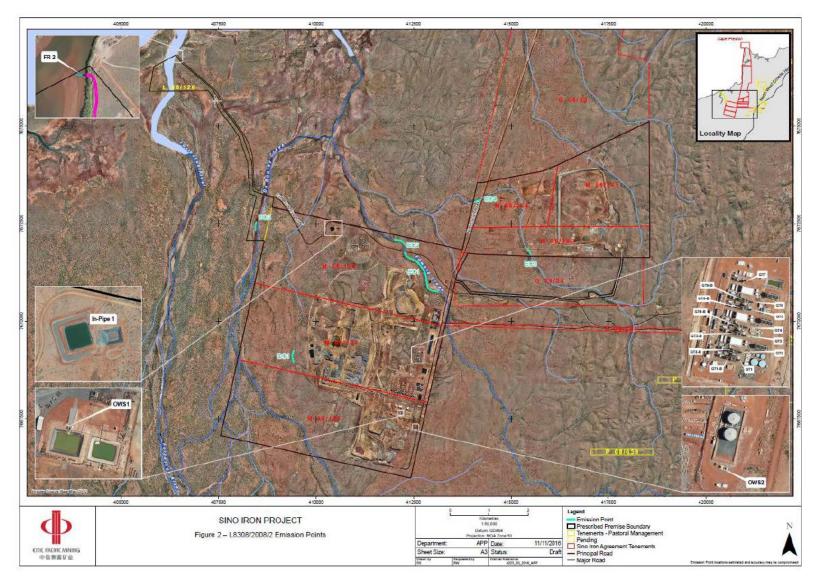


Figure 1: Baseline surface water monitoring locations

It should also be noted that the samples were analysed for asbestos actual fibre content. The Australian Drinking Water Guidelines and World Health Organisation do not set standards for fibres in drinking water or regard fibres in drinking water as hazardous. The water is not used for human consumption, however, native fauna or cattle may consume this water. *"There is no consistent, convincing evidence that ingested asbestos is hazardous to health, and it is concluded that there is no need to establish a guideline for asbestos in drinking-water."* (World Health Organization, 1996, Asbestos in Drinking-water).

DER internal specialist advice has confirmed that the existing literature suggests that impacts on human health by asbestos fibres in water are negligible, but there are potential environmental consequences for filter-feeding organisms like various species of shellfish. Information is documented in *'Uptake of Chrysotile Asbestos Fibers Alters Growth and Reproduction of Asiatic Clams'* and *'Effects of nanoparticles in Mytilus edulis gills and hepatopancreas - a new threat to marine life?'* However, as the area is highly tidal, it is not expected to be a habitat for filter feeders. The Licensee has stated that no studies have been commissioned on the presence of filter feeding organisms within the tributaries of Edwards and Du-Boulay Creeks, however, visual observations have only identified filter feeders (mussels and oysters) within tidal areas. The receiving environment at the proposed discharge locations is not anticipated to be conducive to filter feeding organisms due to the intermittent flows and soft-bottom substrates.

The Licensee has proposed to monitor pH and Total Dissolved Solids as part of the point source and ambient monitoring campaign. The following parameters have been ruled out by the Licensee for monitoring:

- Nutrients will not be monitored as these are ephemeral streams where algal is unlikely to accumulate and the area is within a pastoral station;
- Dissolved Oxygen cannot be ascertained in ephemeral creeks prior to rain events and during rain events Dissolved Oxygen will be at a maximum due to stream flow;
- Turbidity is expected to be high during a rainfall event in an ephemeral creek;
- Temperature will be ambient; and
- The application states that hydrocarbons have not been identified in any samples to date. Results have been provided from the Mine Dam and Environmental Dam for 2016. Samples from the Process/TSF streams have not been taken as this water originates from the Desalination Plant is maintained in a closed loop avoiding contamination from hydrocarbons, which is important for the magnetic separation of magnetite to be effective.

Limits for point source pH and Total Dissolved Solids have been set internally by the Licensee based on the baseline monitoring data collected. Water will only be discharged once it has been ascertained that pH is within the range of 6.5 – 9 pH units and Total Dissolved Solids is less than 10,000 mg/L at controlled surface water discharge points EC1, EC2, EC3, DC1; less than 20,000 mg/L at controlled surface water discharge point EC4, and less than 50,000 mg/L at controlled surface point DC2 as the salinity increases with proximity to the coast.

Vegetation

The Office of the Environmental Protection Authority (OEPA) Ministerial Statement 635 condition 6 required the Licensee to implement a Pit Dewatering and Vegetation Monitoring Plan, with the purpose of this plan to allow deep-rooted vegetation, by extending their root systems, the maximum opportunity to adjust to the dropping water regime by dewatering the pit as slowly as possible, commensurate with the requirements of mining. This Plan shall include monitoring of representative stands of creekline vegetation and other areas of conservation significance within the zone of groundwater depletion, to determine the extent of

effects of ground water drawdown on this vegetation.

As a result, a series of Groundwater Dependent Vegetation monitoring sites are established within DuBoulay and Edwards Creeks and have been monitored since 2009. See Figure 2. The monitoring conducted for these sites can also be used to establish if the controlled surface water discharges are resulting in detrimental impacts to the vegetation. This data is reported to the Office of the Environmental Protection Authority.

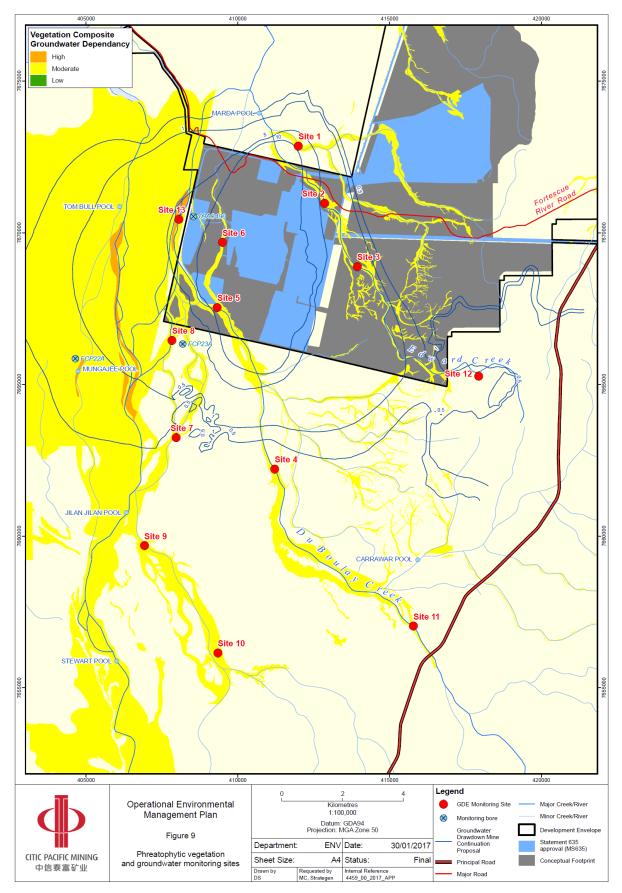


Figure 2: Phreatophytic vegetation and groundwater monitoring sites

The Licensee has also committed to visually monitor the controlled surface water discharge point within three months of a discharge event to assess for signs of stress on native flora and fauna. This data is to be reported to DER.

Other Approvals

The Licensee also holds a licence to extract water for the purpose of mine dewatering and other mining related operations under section 5C of the *Rights in Water and Irrigation Act 1914* through the Department of Water (GWL167151(6)).

Tailings Storage Facility 1B Lift

A licence amendment application was received by DER on 24 February 2017 as the embankment height of TSF1B has been increased from 28.8mRL to 33mRL. Construction was approved by works approval W4447/20081. The Department of Mines and Petroleum (DMP) approved this modification on the 11 January 2017.

The increase in TSF1B embankment height to 33mRL will not alter any of the established pollution controls, necessitate any changes to the ambient monitoring regimes or increase the prescribed tailings production rate of 35.8 Mtpa.

Bores BH08-08 (09DD600) and BH08-16 (09DD604)

On 30 September 2016 DER was advised that groundwater monitoring bore BH08-08 was damaged during earthworks for TSF2 and a replacement bore was required. TSF_009 was included in the monitoring regime to replace the bore in November 2016. This update to Condition 3.7.1, Table 3.7.1 has been made in the licence during this amendment.

On 3 March 2017 DER was further advised that groundwater monitoring bore BH08-16 was damaged during earthworks for TSF2 and a replacement bore is required. As a drill-rig is necessary to be mobilised to site to drill the replacement bore, it may be a number of months before a sample can be taken. The Licensee will take interim samples from TSF_006, an internal bore that is in the vicinity of BH08-16 as shown in Figure 3 below until the replacement bore is in place.

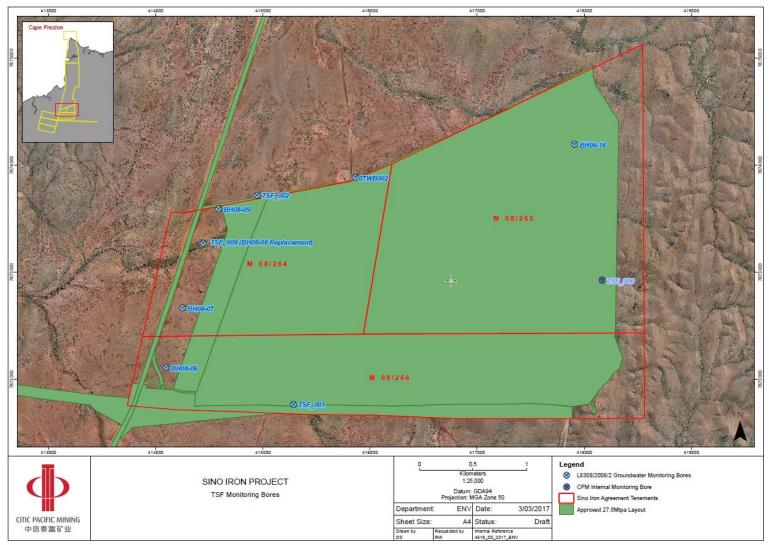


Figure 3: TSF monitoring bores

Location, environmental siting and potential receptors

Residential and Sensitive Premises	Distance from Prescribed Premises Boundary				
Fortescue River Mouth recreational area (not a registered campsite by the City of Karratha)	More than 5 km to the north-west				
Mardie Station Pastoral Lease	More than 20 km south-west				
Fortescue River Roadhouse	More than 25 km to the south				

Table 4 below lists the relevant human receptors in the vicinity of the prescribed premises.

Table 5 below lists the relevant environmental receptors in the vicinity of the prescribed premises.

Environmental receptor	Distance from Prescribed Premises Boundary
Fortescue River	More than 5 km to the north-west
Deboulay Creek	More than 2.5 km to the north
Edwards Creek	Onsite
Yaggobiddy Creek	Onsite

Risk assessment

Tables 6 and 7 below apply a risk assessment to the potential emissions which may arise from the amendment application. Both tables identify whether these emissions present a material risk requiring regulatory controls.

Risk Assessment

Table 6. Identification of emissions, pathway and receptors for inclusion of controlled surface water discharge points during construction

		Risk	Event			0			
Source/A	Source/Activities		Potential Receptors	Potential Pathway	Potential Adverse Impacts	Consequence rating	Likelihood rating	Risk	Reasoning
	Vehicle movements on unsealed access roads	Noise	Fortescue River Mouth recreational area is the nearest	Air / wind	Health and amenity impacts	Slight	Unlikely	Low	The Delegated Officer considers the distance to the receptor to be too great for impacts to occur; given this is over 5km away and not a registered camp area.
_		Dust	receptor located more than 5 km to the north-west		Health and amenity impacts	Slight	Unlikely	Low	No receptor present plus existing licence has dust monitoring requirements
Construction, mobilisation and positioning of	Construction of new discharge pipelines and points	Noise	Fortescue River Mouth recreational area is the nearest	Air / wind dispersion	Health and amenity impacts	Slight	Unlikely	Low	The Delegated Officer considers the distance to the receptor to be too great for impacts to occur; given this is over 5km away and not a registered camp area.
infrastructure		Dust	receptor located more than 5 km to the north-west		Health and amenity impacts	Slight	Unlikely	Low	No receptor present plus existing licence has dust monitoring requirements
	Disturbance of terrestrial vegetation for laying of pipeline	No emission	Terrestrial vegetation in the pathway of the pipeline	Direct impact	Loss of local biodiversity	N/A	N/A	N/A	Managed under Part IV (Ministerial Statement)

		Risk E	Event						
Source/A	ctivities	Potential Emissions	Potential Receptors	Potential Pathway	Potential Adverse Impacts	Consequence rating	Likelihood rating	Risk	Reasoning
Discharge of excess water	Discharge to Edwards Creek and tributaries of Edwards and DuBoulay Creeks	Stormwater and process water discharged to surface waters	Riparian ecosystems Fauna in creeks (crabs, turtles fish etc.)	Direct discharge	Erosion of creek banks Negative impacts to water quality causing ecosystem disruption on fauna if discharge water is contaminated Disruption of normal ecosystem function from modifications to water quality Increased turbidity	Slight	Possible Unlikely	Low	The Delegated Officer considers that controlled surface water discharges will occur only as a last resort and will be pre- planned. The Licensee has committed to minimise erosion and scouring with the use of multiple discharge points to spread the flow, and a layer of riprap will be installed to protect the receiving water bank from erosion. The Delegated Officer therefore considers that impacts from the erosion of creek banks will be slight as the controlled surface water discharge points are all located onsite (so offsite impacts are not expected) and impacts are expected to be minimal, and the likelihood of occurrence is possible . The risk rating for erosion of creek banks is therefore low . The Delegated Officer considers that controlled surface water discharges will occur only as a last resort and will be pre- planned. The Licensee has implemented a baseline monitoring campaign and will monitor both point source discharge and ambient water quality. Limits have been set for pH and Total Dissolved Solids. Ambient monitoring of pH and TDS will be conducted 500m downstream during a discharge.

Table 7: Identification of emissions, pathway and receptors for inclusion of controlled surface water discharge points during operation

									The Delegated Officer therefore considers that impacts from modifications to water quality will be minor and the likelihood of occurrence is unlikely . The risk rating for modification to water quality is therefore medium .
					Disruption of normal ecosystem function from inundation of riparian vegetation	Minor	Unlikely	Medium	The Delegated Officer considers that controlled surface water discharges will occur only as a last resort and will be pre- planned. Erosion and scouring is minimised, using multiple discharge points to spread the flow and a layer of riprap will be installed to protect the receiving water bank from erosion. This should ensure that pooling of water in areas does not occur and that water discharged should flow downstream along with natural flows. Discharge will predominantly occur immediately prior to after a rainfall event when water will likely be flowing through the creek lines. Visual monitoring of the discharge point will occur within three months of a discharge event to assess for signs of stress on native flora and fauna and monitoring is also conducted under OEPA Pit Dewatering and Vegetation Monitoring Plan. The Delegated Officer considers that impacts from inundation of riparian vegetation will be minor and the likelihood of occurrence is unlikely . The risk rating for inundation of riparian vegetation is therefore medium .
Transfer of excess water via pipelines	Controlled surface water discharge pipeline	Stormwater and process water discharge to land as a result of pipeline rupture/ leak	Vegetation adjacent to controlled surface water discharge pipeline	Direct discharge	Soil contamination inhibiting vegetation growth and survival	Slight	Unlikely	Low	The Delegated Officer considers that the quality of the water that would be discharged is reasonable, with a Total Dissolved Solids of less than 20,000 mg/L. Management controls in place by

			alignment						the Licensee include routine inspections of the pipeline during use and regular maintenance.
									The Delegated Officer considers that impacts from a rupture of the pipeline will be slight as the pipeline is located onsite in an already disturbed area (so offsite impacts are not expected) and impacts would be expected to be minimal as the water quality is not highly saline, and the likelihood of occurrence is unlikely . The risk rating for pipeline ruptures is therefore low .
Refuelling pump engines	Diesel used to refuel pump engines for pumping of water to the controlled surface water discharge	Hydrocarbons	Vegetation adjacent to pump engines	Direct discharge	Potential suppression of photosynthetic and respiratory functions	Slight	Unlikely	Low	The Delegated Officer considers that the potential volumes of hydrocarbons that could be spilt during refuelling would be low. The Licensee also has infrastructure controls in place, such as a spill guard and bunding built within the generator and management controls in place, such as monthly inspections and spill kits available.
engines	points could potentially discharge during refuelling								The Delegated Officer considers that impacts from a spill to vegetation during refuelling will be slight as the pump is located onsite (so offsite impacts are not expected) and impacts would be expected to be minimal, and the likelihood of occurrence is unlikely . The risk rating for diesel spills is therefore low .
			Groundwater in the vicinity of pump engines	Infiltration from ground surface	Groundwater contamination	Slight	Unlikely	Low	The Delegated Officer considers that the potential volumes of hydrocarbons that could be spilt during refuelling would be low and the evaporation rates are high reducing the risk of seepage. The Licensee also has infrastructure controls in place, such as a spill guard and bunding built within the generator and

									 management controls in place, such as monthly inspections and spill kits available. The Delegated Officer considers that impacts from a spill during refuelling to groundwater will be slight as the pump is located onsite (so offsite impacts are not expected) and impacts would be expected to be minimal, and the likelihood of occurrence is unlikely. The risk rating for pipeline ruptures is therefore low.
TSF1B lift	Increase wall height from 28.8mRL to 33mRL	Tailings from potential wall break	Vegetation in the vicinity of the TSF	Direct discharge	Soil contamination inhibiting vegetation growth and survival	N/A	N/A	N/A	<i>Managed by DMP under the</i> Mining Act 1978.
Bore BH08- 16 removal	Bore BH08- 16 not operational due to damage	Seepage from the TSF	Soil and groundwater	Seepage to ground adjacent to the TSF and seepage from the base of the TSF with infiltration into soils	Groundwater mounding Inundation of vegetation rooting zone and decrease in quality of habitat of subterranean fauna Soil contamination inhibiting vegetation growth and survival and health impacts to fauna	Slight	Unlikely	Low	The Delegated Officer considers that the potential for seepage can be detected as bore TSF_006 will be used in the interim until the replacement bore is installed. Groundwater monitoring from the 2015- 2016 Annual Environmental Report does show that seepage is evident in the vicinity of the TSF, which the Licensee has stated is consistent with the modelling that was conducted prior to operation of the TSF. Bores further from the TSF show deeper groundwater indicating that seepage is localised beneath the TSF. The Delegated Officer considers that impacts from seepage from the TSF will be slight as the TSF is located onsite (so offsite impacts are not expected) and impacts would be expected to be minimal, and the likelihood of occurrence is possible . The risk rating for seepage

				is therefore low .

Decision

The TSF1B height increase has been included in Condition 1.2.8, Table 1.2.3.

The Delegated Officer has determined that the key emissions associated with the inclusion of controlled surface water discharge points is discharge to surface water.

The Delegated Officer considers that the risks associated with these emissions are medium due to distances to sensitive receptors and the Licensee's controls. Additional controls have been incorporated onto the licence including monitoring campaigns and limits.

The discharge points have been included in Condition 2.2.1, Table 2.2.1 along with Licensee controls.

Limits for pH and TDS have been included in Condition 2.2.2, Table 2.2.2.

Monitoring requirements for pH and TDS have been included in Condition 3.3.2, Table 3.3.1.

Ambient monitoring of pH and TDS has been included in Condition 3.7.1, Table 3.7.2 and for vegetation health in Table 3.7.3.

Bore BH08-08 has been removed and replaced by TSF_009, and bore BH08-16 has been removed from Condition 3.7.1, Table 3.7.1.

Improvement Program Condition 4.1.1 has been updated to include IR2 for replacement of groundwater monitoring bore BH08-16.

Schedule 1 *Premises map, map of containment infrastructure and map of monitoring locations* and *Map of emission and monitoring points* has also been updated.

Instrument	Issued	Amendment
L8308/2008/1	23/01/2014	Licence amendment to include the operation of PC1 and PC2 (W5005/2011/1), ML1 (W4447/2008/1) and the Biomax WWTP (W5273/2012/1).
L8308/2008/2	24/03/2016	Licence amended to increase the design capacity of category 5 (inclusion of PC3, PC4, ML2 to ML4 and TSF Stage 1) and category 64, inclusion of categories 12 and 57 and expansion of the premises boundary.
L8308/2008/2	28/07/2016	Licence amended to increase the design capacity of category 5 (inclusion of ML5 and 6).
L8308/2008/2	24/11/2016	Licence amended to include category 6 mine dewatering discharge for 2GL discharge.
L8308/2008/2	16/12/2016	Amendment Notice 1 Licence amendment to change the date of completion for Improvement program IR1 from 31 December 2016 to 30 June 2018

Amendment History

L8308/2008/2	9/06/2017	Amendment Notice 2
		Licence amendment to include controlled surface water discharge points, TSF1B lift and modifications to groundwater monitoring bores BH08-08 and BH08-16.

Amendments

- 1. The licence is amended by the removal of the text shown in strikethrough below and the insertion of the bold text shown in underline below for Containment Infrastructure condition 1.2.8:
 - 1.2.8 The Licensee shall ensure that waste material is only stored and/or treated within vessels or compounds provided with the infrastructure detailed in Table 1.2.3.

Table 1.2.3: Containment infrastructure					
Containment cell or dam number(s) as depicted in Schedule 1	Material	Infrastructure requirements			
TSF Stage 1	Tailings and decant water	880 ha facility to a maximum height of 32.8mRL (TSF Stage 1) and 28.8 <u>33</u> mRL (TSF Stage 1B). Tailings to be deposited from multiple discharge locations around the perimeter of the TSF.			
Process Water Dam	Process water, return water from the TSF thickeners and treated wastewater from the Biomax WWTP	Maintain an operational freeboard of 0.3 m. Lined process water dam, which will store process water, return water from the TSF and treated wastewater from the Biomax WWTP prior to reuse (i.e. within the hoppers and mills).			
TSF Seepage Drains	Seepage water temporarily stored in drains prior to being pumped to the concentrator plant for reuse in processing	A series of finger drains (that will eventually be located underneath the future TSF Stage 2 embankment) will collect any potential seepage from TSF Stage 1.			
Camp 123 Turkey's nest	Mine dewatering water	Lined with High Density Polyethylene Liner to meet a permeability of <10-9 m/s. Maintain an operational freeboard of 0.5 m.			

- 2. The licence is amended by the insertion of the condition below in bold text shown in underline for Infrastructure Requirements condition 1.2.14:
 - 1.2.14 The Licensee shall construct the controlled surface water discharge points in accordance with the requirements specified in the infrastructure requirements detailed in Table 1.2.6. The Licensee must not depart from the design and construction requirements specified in Table 1.2.6 except:
 - (a) <u>where such departure is minor in nature and does not</u> <u>materially change or affect the infrastructure; or</u>
 - (b) where such departure improves the functionality of the infrastructure and does not increase risks to public health, public amenity or the environment;
 - (c) and all other conditions in this Licence are still satisfied.

Table 1.2.6: Infrastru	acture requirements			
Infrastructure	Requirements (Design and construction)			
Controlled surface	Layer of riprap will be installed at each discharge point to protect the			
water discharge points:	receiving water bank from erosion			
EC1	Discharge pipe to Edwards Creek located approximately 300m north of the enviro dam to an existing rock armoured culvert that traverses the north- south infrastructure corridor			
<u>EC2</u>	Discharge pipe to Edwards Creek to a rock armoured culvert that traverses the public Fortescue River Mouth access road			
<u>EC3</u>	Discharge pipe to a tributary of Edwards Creek to a rock armoured section of a 2km creek diversion, that was required to protect the integrity of the TSF embankments, and eventually meets up to the natural flow path of the tributary downstream of EC4			
<u>EC4</u>	Discharge pipe to a remnant tributary of Edwards Creek, which natural flows no longer traverse, and flows under the North-South road and intersects Edwards Creek downstream of EC1 and EC2 to a tidally affected area			
DC1	Discharge pipe to a tributary of DuBoulay Creek that is within the footprint of the proposed west pit scheduled to be mined within the next five years			
DC2	Discharge pipe to a tributary of DuBoulay Creek that has a width of 100m			
Note 1: Where the details and commitments of the documents listed in condition 1.2.14 are				
inconsistent with any other condition of this Licence, the conditions of this Licence shall prevail.				

- 3. The licence is amended by the insertion of the bold text shown in underline for compliance requirements condition 1.2.15:
 - 1.2.15 The Licensee shall submit a compliance document to the CEO, following the construction of the controlled surface water discharge points. The compliance document/s shall:
 - (a) <u>be certified by a suitably qualified engineer and certify that</u> <u>the works were constructed in accordance with the</u> construction requirements specified in Table 1.2.6;
 - (b) provide a list of departures from the specified works certified by a suitably qualified engineer; and
 - (c) <u>be signed by a person authorised to represent the Licensee</u> and contain the printed name and position of that person within the company.
- The licence is amended by the insertion of the bold text shown in underline for operational requirements of the controlled surface water discharge points condition 1.2.16:

1.2.16. The Licensee shall operate the controlled surface water discharge points in accordance with the conditions of this Licence, following submission of the compliance document required under condition 1.2.15.

- 5. The licence is amended by the insertion of the bold text shown in underline below for Point source emissions to surface water condition 2.2.1:
 - 2.2.1 The Licensee shall ensure that where waste is emitted to surface water from the emission points in Table 2.2.1 and identified on the map of emission points in Schedule 1 it is done so in accordance with the conditions of this Licence.

Table 2.2.1: Emission points to surface water						
Emission point reference and location on Map of emission points	Description	Source including abatement				
FR2	Discharge pipe to Fortescue River Mouth	 Mine dewatering water discharged through a diffuser: (a) the diffuser shall be submerged beneath the water; (b) the diffuser shall be at least 10 m from the Fortescue River embankment; (c) the diffuser length shall be 21 m with ports 1.5 m apart, orientated downstream; and (d) the pipeline shall be equipped with a pressure monitoring system. 				
<u>EC1</u>	Discharge pipe to Edwards Creek located approximately 300m north of the enviro dam	Stormwater and process water discharged in a controlled manner as a result of an uncontrollable event:				
EC2	Discharge pipe to Edwards Creek	(a) <u>control the discharge rate so that</u> erosion and scouring is minimised;				
EC3	Discharge pipe to a tributary of Edwards Creek	(b) <u>use multiple discharge points to spread</u> <u>the flow; and</u>				
EC4	Discharge pipe to a remnant tributary of Edwards Creek	(c) maintain a layer of riprap to protect the receiving water bank from erosion.				
<u>DC1</u>	Discharge pipe to a tributary of DuBoulay Creek within footprint of proposed west pit					
<u>DC2</u>	Discharge pipe to a tributary of DuBoulay Creek with a width of 100 metres					

- 6. The licence is amended by the insertion of the bold text shown in underline below for Point source emissions to surface water condition 2.2.2:
 - 2.2.2 The Licensee shall not cause or allow point source emissions to surface water that do not meet the limits listed in Table 2.2.2.

Table 2.2.2: Point source emi	ssion limits to surface water		
Emission point reference	Parameter	Limit (including units)	Averaging period
FR2	pH ¹	6-9 pH units	Spot sample
	Temperature ¹	<65 °C	
	Total Dissolved Solids ¹	<70,000 mg/L	
	Nitrate	<50 mg/L	
	Cadmium	<0.1485 mg/L	
	Chromium (VI)	<0.1188 mg/L	
	Cobalt	<0.027 mg/L	
	Copper	<0.0351 mg/L	
	Lead	<0.1188 mg/L	
	Mercury	<0.0108 mg/L	
	Nickel	<1.89 mg/L	
	Silver	<0.0378 mg/L	
	Vanadium	<2.7 mg/L	
	Zinc	<0.405 mg/L	
	Total Recoverable	<15 mg/L	
	Hydrocarbons	_	
<u>EC1</u>	pH ¹	<u>6.5-9 pH units</u>	
EC2	Total Dissolved Solids ¹	<u><10,000 mg/L</u>	
EC2 EC3 DC1			
EC4	pH ¹	<u>6.5-9 pH units</u>	
	Total Dissolved Solids ¹	<u><20,000 mg/L</u>	
DC2	<u>pH¹</u>	6.5-9 pH units	
	Total Dissolved Solids ¹	<u><50,000 mg/L</u>	

Note 1: In-field non-NATA accredited analysis permitted.

- 7. The licence is amended by the insertion of the bold text shown in underline below for Monitoring of point source emissions to surface water condition 3.3.2:
 - 3.3.2 The Licensee shall undertake the monitoring in Table 3.3.1 according to the specifications in that table.

Table 3.3.1: Monitorir	ng of point source emissions	to surface wate	r	
Emission point reference	Parameter	Units	Frequency	Method
FR2 – monitoring	Volumetric flow rate	m ³ /day	Daily	AS/NZS 5667.6
conducted in-pipe	pH ¹	pH units	Monthly	AS/NZS 5667.1
from a sampling tap	Temperature ¹	°C		
	Dissolved Oxygen ¹	mg/L		
	Electrical Conductivity ¹	µS/cm		
	Total Dissolved Solids	mg/L		
	Total Suspended Solids	mg/L		
	Total Nitrogen	mg/L		
	Bioavailable Nitrogen	mg/L		
	Nitrate	mg/L		
	Ammonia	mg/L		
	Total Phosphorus	mg/L		
	Bioavailable Phosphorus	mg/L		
	Bioavailable Organic Carbon	mg/L		
	Chlorophyll a	mg/L		
	Aluminium	mg/L	1	
	Arsenic	mg/L		
	Boron	mg/L		
	Cadmium	mg/L		
	Chromium (III)	mg/L		
	Chromium (VI)	mg/L		
	Cobalt	mg/L		
	Copper	mg/L		
	Iron	mg/L		
	Lead	mg/L		
	Mercury	mg/L		
	Manganese	mg/L		
	Nickel	mg/L		
	Selenium	mg/L		
	Silver	mg/L		
	Strontium	mg/L		
	Vanadium	mg/L		
	Zinc	mg/L		
	Total Recoverable Hydrocarbons	mg/L		
Camp 123 Turkey's	pH ¹	pH units	Monthly	AS/NZS 5667.1
nest	Temperature ¹	°C	1	
	Dissolved Oxygen ¹	mg/L		
	Electrical Conductivity ¹	µS/cm		
	Total Dissolved Solids	mg/L		
	Total Suspended Solids	mg/L		
	Total Nitrogen	mg/L		
	Bioavailable Nitrogen	mg/L	1	
	Nitrate	mg/L	1	
	Ammonia	mg/L	1	
	Total Phosphorus	mg/L	1	
	Bioavailable Phosphorus	mg/L	1	
	Bioavailable Organic Carbon	mg/L	1	
	Chlorophyll a	mg/L	-	
			-	
	Aluminium	mg/L	-	
L	Arsenic	mg/L		

	Boron	mg/L		
	Cadmium	mg/L		
	Chromium (III)	mg/L		
	Chromium (VI)	mg/L		
	Cobalt	mg/L		
	Copper	mg/L		
	Iron	mg/L		
	Lead	mg/L		
	Mercury	mg/L		
	Manganese	mg/L	_	
	Nickel	mg/L	_	
	Selenium	mg/L	_	
	Silver	mg/L	_	
	Strontium	mg/L	_	
	Vanadium	mg/L	_	
	Zinc	mg/L	_	
	Total Recoverable	mg/L		
	Hydrocarbons			
EC1 EC2	<u>pH¹</u>	<u>pH units</u>	Prior to	AS/NZS 5667.6
EC2	Total Dissolved Solids ¹	<u>mg/L</u>	discharge	
EC3 EC4				
DC1				
<u>DC2</u>				

Note 1: In-field non-NATA accredited analysis permitted.

- 8. The licence is amended by the insertion of the bold text shown in underline below for Ambient environmental quality monitoring condition 3.7.1:
 - 3.7.1 The Licensee shall undertake the monitoring in Table 3.7.1, Table 3.7.2 and Table 3.7.3 according to the specifications in that table.

Table 3.7.1: Monitoring of ambient groundwater quality					
Monitoring point reference and location	Parameter	Units	Averaging	Frequency	
as depicted in			period		
Schedule 1					
	pH ¹	pH units			
	Total Nitrogen	mg/L			
	Total Phosphorus	mg/L			
	Total Dissolved Solids	mg/L			
	Lead	mg/L			
09NC565	Mercury	mg/L			
10NC585 (Control)	Copper	mg/L			
09NC564	Chromium (hexavalent)	mg/L	Spot sample	Six monthly	
09NC566	Arsenic	mg/L			
09140300	Nickel	mg/L			
	Zinc	mg/L			
	Cadmium	mg/L			
	Total Recoverable	mg/L			
	Hydrocarbons	_			
	Standing Water Level ²	Mbgl			
	Standing Water Level ²	Mbgl	Spot sample	Monthly	
TSF_001	Oxidation Reduction	mV			
BH08-06 (09DD598)	Potential ¹				
BH08-07 (09DD599)	pH ¹				
BH08-08 (09DD600)	Dissolved Oxygen ¹	mg/L			
<u>TSF_009</u>	Temperature ¹	°C	Spot sample	Quarterly	
BH08-09 (09DD602)	Electrical Conductivity ¹	µS/cm			
TSF_002	Total Dissolved Solids	mg/L			
BH08-16 (09DD604)	Total Sulfur	mg/L			
Replacement bore to	Calcium	mg/L			

Licence: L8308/2008/2

File No: DER2014/000430

be installed (IR2)	Sodium	mg/L		
07WB002 (07NC256)	Total Alkalinity	mg/L		
	Chloride	mg/L		
	Magnesium	mg/L		
	Potassium	mg/L		
	Sulfate (SO ₄ ²⁻)	mg/L		
	Bicarbonate (HCO ₃)	mg/L		
	Carbonate (CO_3^{2-})	mg/L		
	Aluminium	mg/L		
	Lead	mg/L		
	Mercury	mg/L		
	Copper	mg/L		
	Chromium (hexavalent)	mg/L		
	Nickel	mg/L	Spot sample	Six monthly
	Zinc	mg/L		
	Cadmium	mg/L		
	Cobalt	mg/L		
	Iron	mg/L		
	Manganese	mg/L		

Note 1: In-field non-NATA accredited analysis permitted. Note 2: Standing water level should be determined prior to collection of other water samples.

Table 3.7.2: Monitoring of an Monitoring point reference	Parameter	Units	Averaging	Frequency
and location as depicted in		•	period	
Schedule 1			P	
	pH ¹	pH units		
	Temperature ¹	°C		
	Dissolved Oxygen ¹	mg/L		
	Electrical Conductivity ¹	µS/cm		
	Total Dissolved Solids	mg/L		
	Total Suspended Solids	mg/L		
	Total Nitrogen	mg/L		
	Bioavailable Nitrogen	mg/L		
	Nitrate	mg/L		
	Ammonia	mg/L		
	Total Phosphorus	mg/L		
FR1 (1 km downstream of	Bioavailable	mg/L		Monthly during
discharge point)	Phosphorus			discharge to obtain
3-1	Bioavailable Organic	mg/L		dilution data for a 12
FR2 (discharge point)	Carbon			month period from
	Chlorophyll a	mg/L		the date of
FR3 (1 km upstream of	Aluminium	mg/L		submission of the
discharge point)	Arsenic	mg/L	Spot sample	compliance
	Boron	mg/L		documentation for
FR4 (18 m upstream of	Cadmium	mg/L		the mine dewatering
discharge point)	Chromium (III)	mg/L		discharge
	Chromium (VI)	mg/L		infrastructure
FR5 (18 m downstream of	Cobalt	mg/L		required by Condition
discharge point)	Copper	mg/L		5.3.1.
	Iron	mg/L		
	Lead	mg/L		
	Mercury	mg/L		
	Manganese	mg/L		
	Nickel	mg/L		
	Selenium	mg/L		
	Silver	mg/L		
	Strontium	mg/L		
	Vanadium	mg/L		
	Zinc	mg/L		
	Total Recoverable	mg/L		

	Hydrocarbons			
500m downstream of the	PH ¹	<u>pH units</u>		During the
discharge points:	Total Dissolved	mg/L		discharge where it
-	Solids ¹			is safe to do so
EC1 (ambient)			Smot	
EC2 (ambient)			Spot	In the event that it
EC3 (ambient)			<u>sample</u>	is not safe to do so,
EC4 (ambient)				comparison should
DC1 (ambient)				be made to historic
DC2 (ambient)				data with reason
				justified

Note 1: In-field non-NATA accredited analysis permitted.

Table 3.7.3: Monitoring of anMonitoring point referenceand location as depicted inSchedule 1	nbient <u>vegetation</u> health Parameter	Averaging period	Frequency
FR2 (discharge point)	Visually estimate the average foliage cover Score the health condition General environmental description of the site and record any changes since previous monitoring Take replicate photographs of foliage density and shadow areas beneath trees.	Visual inspection	Annually
Areas of stream discharge: EC1 EC2 EC3 EC4 DC1 DC2	Signs of stress on native flora and fauna	<u>Visual</u> inspection	<u>Within three</u> <u>months of</u> <u>discharge</u>

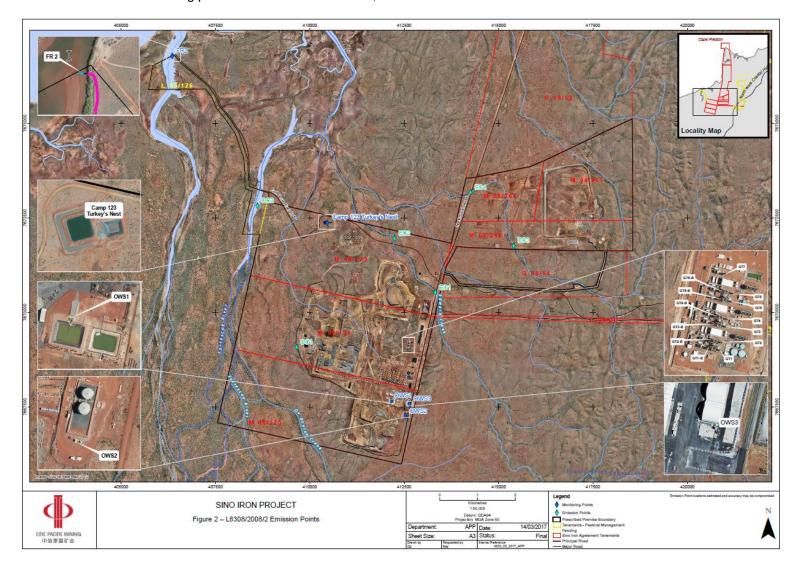
- 9. The licence is amended by the insertion of the bold text shown in underline below for Improvement Program condition 4.1.1.
 - 4.1.1 The Licensee shall complete the improvements in Table 4.1.1 by the date of completion in Table 4.1.1.

Table 4.1.1: Improvement program		
Improvement reference	Improvement ¹	Date of completion
IR1	The Licensee shall certify that the point source air emission levels from each turbine unit of the Power Station for oxides of nitrogen (NO _x) and carbon monoxide (CO) of <25 ppmv and <50 ppmv, respectively, have been met at full load.	30 June 2018
<u>IR2</u>	The Licensee shall install a replacement groundwater monitoring borefor BH08-16 (09DD604). The Licensee shall monitor from thisgroundwater monitoring bore as per Condition 3.7.1, Table 3.7.1following its installation.	<u>30 June</u> <u>2017</u>

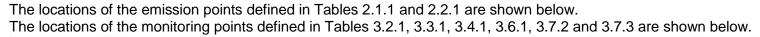
Note 1: All units are referenced to STP dry at 15% O2

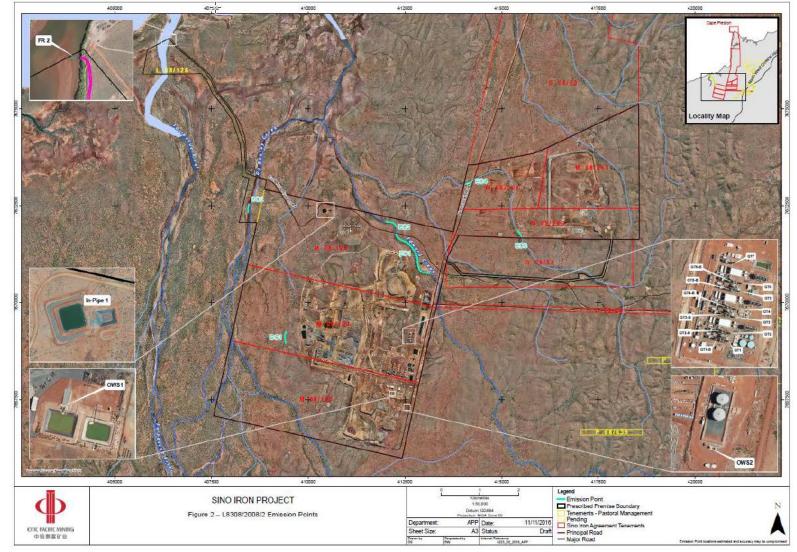
10. The licence is amended by the insertion of the bold text shown in underline below for Annual Environmental Report condition 5.2.1.

5.2.1 The Licensee shall submit to the CEO an Annual Environmental Report within 120 calendar days after the end of the Anniversary Date. The report shall contain the information listed in Table 5.2.1 in the format or form specified in that table.



Condition or	nnual Environmental Report Parameter	Format or form
able		
(if relevant)		
-	Summary of any failure or malfunction of any pollution control	None specified
	equipment and any environmental incidents that have occurred during	
Table 3.3.1	the annual period and any action taken Volumetric flow rate, pH, Temperature, Dissolved Oxygen, Electrical	WR1
	Conductivity, Total Dissolved Solids, Total Suspended Solids, Total	VVIXI
	Nitrogen, Bioavailable Nitrogen, Nitrate, Ammonia, Total Phosphorus,	
	Bioavailable Phosphorus, Bioavailable Organic Carbon, Chlorophyll a,	
	Aluminum, Arsenic, Boron, Cadmium, Chromium (III), Chromium (VI),	
	Cobalt, Copper, Iron Mercury, Lead, Manganese, Nickel, Selenium,	
Table 3.4.1	Strontium, Zinc, Total Recoverable Hydrocarbons pH, Biochemical Oxygen Demand, Total Suspended Solids, <i>E.coli</i> ,	LR1
Table 5.4.1	Total Nitrogen and Total Phosphorus	
Table 3.5.1	Inert Waste Type 1, Inert Waste Type 2, Special Waste Type 1, Special	None specified
	Waste Type 2, Clean Fill, Putrescible Waste, Contaminated Solid	
	Waste and Other wastes	
Table 3.6.1	pH, Biochemical Oxygen Demand, Total Suspended Solids, <i>E.coli</i> ,	None specified
	Total Nitrogen, Total Phosphorus, Total Recoverable Hydrocarbons,	
	Combined decant water and seepage water recovery volumes and volume of tailings deposited	
Table 3.7.1	pH, Total Nitrogen, Total Phosphorus, Total Dissolved Solids, Lead,	None specified
	Mercury, Copper, Chromium (hexavalent), Arsenic, Nickel, Zinc,	
	Cadmium, Total Recoverable Hydrocarbons, Standing Water Level,	
	Oxidation Reduction Potential, Dissolved Oxygen, Temperature,	
	Electrical Conductivity, Total Sulfur, Calcium, Sodium, Total Alkalinity,	
	Chloride, Magnesium, Potassium, Sulfate (SO ₄ ²⁻), Bicarbonate (HCO ₃ ⁻), Carbonate (CO ₃ ²⁻), Aluminum, Cobalt, Iron and Manganese	
Table 3.7.2	pH, Temperature, Dissolved Oxygen, Electrical Conductivity, Total	None specified
	Dissolved Solids, Total Suspended Solids, Total Nitrogen, Bioavailable	
	Nitrogen, Nitrate, Ammonia, Total Phosphorus, Bioavailable	
	Phosphorus, Bioavailable Organic Carbon, Chlorophyll a, Aluminum,	
	Arsenic, Boron, Cadmium, Chromium (III), Chromium (VI), Cobalt,	
	Copper, Iron, Mercury, Lead, Manganese, Nickel, Selenium, Strontium,	
	Zinc, Total Recoverable Hydrocarbons	
	A comparison of the data obtained against baseline results shall be	
	provided.	
Table 3.7.3	Visually estimate the average foliage cover	None specified
	Score the health condition	
	General environmental description of the site and record any changes	
	since previous monitoring Take replicate photographs of foliage density and shadow areas	
	beneath trees.	
	Signs of stress on native flora and fauna at areas of stream	
	discharge:	
	<u>EC1, EC2, EC3, EC4</u> <u>DC1, DC2</u>	
1.2.12	Annual water balance for the TSF	None specified
3.3.1	Discharge commencement and cessation date and times recorded,	None specified
	along with tidal data from measurement locations.	
5.1.2	Compliance	Compliance
		Report
5.1.3	Complaints summary are in Schedule 2	None specified


Note 1: Forms are in Schedule 2


11. Replacement of the *Premises map, map of containment infrastructure and map of monitoring locations* to the following:

The Premises is shown in the map below. The black line depicts the Premises boundary. The location of the containment infrastructure defined in Table 1.2.3 is shown below. The locations of the emission point defined in Table 2.3.1 is shown below. The location of the monitoring points defined in Tables 3.4.1, 3.5.1 and 3.7.1 are shown below.

12. Replacement of the first map of *Map of emission and monitoring points* to the following:

References

World Health Organization (1996), Asbestos in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality

Scott E. Belanger, Donald S. Cherry, John Cairns Jr. (1986), Uptake of Chrysotile Asbestos Fibers Alters Growth and Reproduction of Asiatic Clams

Angela Koehler, Ute Marx, Katja Broeg, Sieglinde Bahns, Jana Bressling (2008), Effects of nanoparticles in Mytilus edulis gills and hepatopancreas - a new threat to marine life?