

REPORT NUMBER: 2425-119

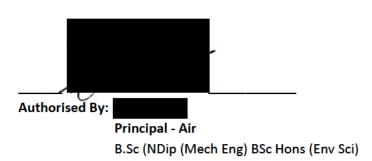
Clean Energy Fuels Australia Pty Ltd

Mt Magnet Emissions Monitoring

20 January 2025

NATA Accredited Laboratory Number: 17108. Accredited for compliance with ISO/IEC 17025 - Testing.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.


CLIENT INFORMATION

Client Nam	ne:	Clean Energy Fuels Australia Pty Ltd
Attention:	I	Basil Lenzo
Address:	•	Cooladar Hill, WA 6638
/		-
Written By:		
	Environme	ental Scientist

B.Sc (Zoology and Ecology), B.Sc (Mathematics and Statistics)

B.Sc (Extractive Metallurgy)

DOCUMENT CONTROL

Status: Final Date: 20 January 2025 Version Number: 1.0 Version Edits: First Issue

STATEMENT OF LIMITATION

This assessment was restricted to the agreed-upon scope of work. No representations or warranties are made concerning the nature or quality of air, water or soil or any other substance on the inspected property, other than visual observations or measurements as stated within this report.

In preparing this report, Emission Assessments has relied upon certain verbal information and documentation provided by the client and/or third parties. Except as discussed, Emission Assessments did not attempt to independently verify the accuracy or completeness of that information; but did not detect any inconsistence or omission of a nature that might call into question the validity of any of it. To the extent that the conclusions in this report are based in whole or in part on such information, they are contingent on its validity. Emission Assessments assume no responsibility for any consequences arising from any information or condition that was concealed, withheld, misrepresented or otherwise not fully disclosed or available to Emission Assessments.

Within the limitations of the agreed-upon scope of work, this assessment has been undertaken and performed in a professional manner, in accordance with generally accepted practices, using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied is made.

This report is based upon a scope and is subject to the limitations defined herein. It has been prepared on behalf of Clean Energy Fuels Australia Pty Ltd for the benefit of Clean Energy Fuels Australia Pty Ltd. No person or organisation other than Clean Energy Fuels Australia Pty Ltd is entitled to rely upon it without prior written consent from Emission Assessments; and such third party in using or relying on this report shall have no legal recourse against Emission Assessments and shall indemnify and defend them from and against all claims arising out of, or in conjunction with, such use or reliance.

TABLE OF CONTENTS

1	INTRO	DUCTION5
2	SAMP	LING PLANE ASSESSMENT6
3	RESUL	TS TABLES & CHARTS7
	3.1	Generators 1 – 4 Stack parameters 7
	3.2	Generator 1 - Results 8
	3.3	Generator 1 CHART9
	3.4	Generator 2 - Results 10
	3.5	Generator 2 CHART 11
	3.6	Generator 3 - Results 12
	3.7	Generator 3 CHART 13
	3.8	Generator 4 - Results14
	3.9	Generator 4 CHART 15
4	OPERA	ATIONAL CONDITIONS
5	VARIA	TIONS TO PROTOCOLS
6	SAMP	LING METHODOLOGY17
7	REPOF	TING LIMITATIONS
8	DEFIN	ITIONS

LIST OF APPENDICES

- Appendix A: Method Summary Testing Program Scope
- Appendix B: Analytical Report and Chain of Custody Formaldehyde (NMI)

1 INTRODUCTION

Emission Assessments Pty Ltd (EAPL) was engaged by Clean Energy Fuels Australia Pty Ltd to conduct stack emissions monitoring at their Mt Magnet LNG Plant. As part of their operations at this facility, Clean Energy Fuels Australia Pty Ltd operates four Cummins natural gas generators as the main source of power at their facility. The resultant emissions are released to atmosphere via exhaust stack.

As part of the facilities Department of Water and Environmental Regulation (DWER) work approval requires that Clean Energy Fuels Australia Pty Ltd report specified discharge parameters in accordance with promulgated reference methods. These discharge parameters are as listed below in **Table i**.

Table i: Scope of Work as per Condition 3.2 of DWER operating licence

Parame	ter	Duration	Method
Velocity, Temperature	& Volumetric flow	Each Test	USEPA Method 2
Nitrogen oxides	(NO & NO ₂)	30 minute	USEPA Method 7E
Carbon mor	noxide	30 minute	USEPA Method 10
Formaldehyde	e (HCHO)	30 minute	USEPA Method 323

Note 1: all units are referenced to STP dry

Note 2: Concentration units for all gases are referenced to 15% O₂

Note 3: Monitoring shall be undertaken to reflect normal operating conditions

Note 4: Where any USEPA method refers to USEPA Method 1 for the sampling plane, this must be read as a referral to AS 4323.1

Monitoring was conducted on behalf of Emission Assessments on the 10th December 2024 by Senior Environmental Scientist Khumbu Badantswana and Environmental Technician Renren Meneses.

All source data is available upon request.

2 SAMPLING PLANE ASSESSMENT

Refer to Table ii for sampling plane assessment for Ideal and conformant conditions.

Table ii: Stack Measurement Location Details

Parameter	Results Units	
Sampling Source:	Generator 1 - 4	
Stack Orientation:	Vertical	
Stack Shape:	Circular	
Internal Diameter:	0.4 m	
Upstream Disturbance Actual:	2.15 m	
Upstream Disturbance Required:	2.4 m	
Downstream Disturbance Actual:	0.7 m	
Downstream Disturbance Required:	0.8 m	
Ideal/Non-ideal sampling location:	Non-ideal	
Conformance To AS4323.1:	Conformant	
Sample point increased from:	10 Points to 12 Points	

3 RESULTS TABLES & CHARTS

3.1 GENERATORS 1 – 4 STACK PARAMETERS

Table iii: Sampling Details Generators 1 - 4

Paramet		Generator 1		Generator 2		Generator 3		Generator 4	
- urumeters		Run 1	Run 2	Run1	Run 2	Run 1	Run 2	Run 1	Run 2
	Date:	10/12/2024	10/12/2024	10/12/2024	10/12/2024	10/12/2024	10/12/2024	10/12/2024	10/12/2024
	Start Time:	08:13	08:48	09:47	10:22	14:12	14:48	15:54	16:30
	Final Time:	08:43	09:18	10:17	10:52	14:42	15:18	16:24	17:00
Average stack gas temperature	°C	367	367	388	388	386	386	395.0	395.0
Dry gas molecular weight	g/g-mol	29.32	29.32	29.34	29.34	29.34	29.34	29.34	29.34
Average stack gas velocity	m/s	15	15	15	15	15	15	16	16
Actual stack gas flow rate	acm/min	110	110	115	115	113.6	113.6	118	118
Dry standard stack flow rate	dscm/min	42.0	42.0	40.9	40.9	41.8	41.8	42.0	42.0
Sample volume (dry standard)	dscm	0.0137	0.0123	0.0120	0.0150	0.0119	0.0121	0.0120	0.0108

3.2 GENERATOR 1 - RESULTS

Table iv: Results Summary Generator 1

	MDL		Ri	ın 1	Run2	
Parameter			Emission Concentration	Mass Emission Rate	Emission Concentration	Mass Emission Rate
Units	mg/dscm	g/s	mg/dscm	g/s	mg/dscm	g/s
Formaldehyde	0.29	0.00020	2.9	0.0020	4.7	0.0032
Formaldehyde at 15% O ₂	0.15	0.00011	1.5	0.0010	2.4	0.0017

Analyte	Units	MDL	Run 1	Run2
	mg/dscm	2.9	<2.9	<2.9
Sulphur Dioxide (SO ₂)	g/s	0.002	<0.002	<0.002
	mg/dscm at 15% O2	1.5	<1.5	<1.5
	g/s at 15% O2	0.0011	<0.0011	<0.0011
	mg/dscm	0.13	210	190
Nitrogen Monoxide	g/s	0.000094	0.15	0.13
(NO)	mg/dscm at 15% O₂	0.069	110	98
	g/s at 15% O₂	0.000048	0.077	0.068
	mg/dscm	0.21	85	130
Nitrogon Diavida (NO-)	g/s	0.00014	0.059	0.088
Nitrogen Dioxide (NO2)	mg/dscm at 15% O ₂	0.11	44	64
	g/s at 15% O₂	0.000076	0.031	0.045
	mg/dscm	0.41	410	420
Oxides of Nitrogen	g/s	0.00029	0.29	0.29
(NO _x)	mg/dscm at 15% O₂	0.22	210	210
	g/s at 15% O2	0.00015	0.15	0.15
	mg/dscm	0.13	600	610
Carbon Manavida (CO)	g/s	0.000088	0.42	0.42
Carbon Monoxide (CO)	mg/dscm at 15% O2	0.066	310	310
	g/s at 15% O2	0.000046	0.22	0.22
Oxygen (O2)	%	0.01	9.4	9.4
Carbon Dioxide (CO2)	%	0.01	5.9	6.0

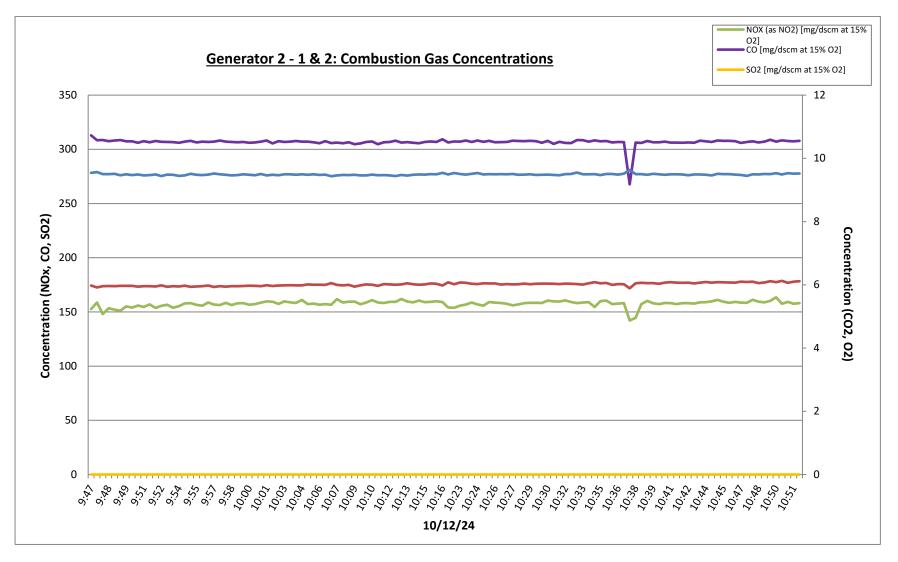
Clean Energy Fuels Australia Pty Ltd Mt Magnet Emissions Monitoring Report Number: 2425-119 Version Number: 1.0

NOX (as NO2) [mg/dscm at 15% O2] • CO [mg/dscm at 15% O2] Generator 1 - 1 & 2: Combustion Gas Concentrations SO2 [mg/dscm at 15% O2] 02 [%] CO2 [%] 350 10 9 300 8 250 7 Concentration (NOx, CO, SO2) Concentration (CO2, O2) 6 200 5 150 4 3 100 2 50 1 0 0 10/12/24

3.3 GENERATOR 1 CHART

3.4 GENERATOR 2 - RESULTS

Table v: Results Summary Generator 2


	MDL		Ru	ın 1	Run2	
Parameter			Emission Concentration	Mass Emission Rate	Emission Concentration	Mass Emission Rate
Unit	s mg/dscm	g/s	mg/dscm	g/s	mg/dscm	g/s
Formaldehyde	0.35	0.00024	4	0.0027	5.7	0.0039
Formaldehyde at 15% O2	0.18	0.00012	2.1	0.0014	2.9	0.0020

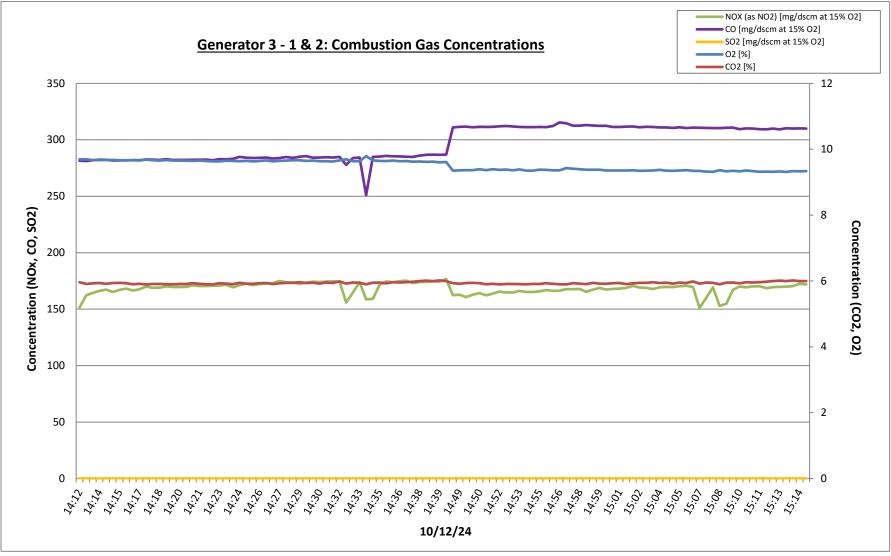
Analyte	Units	MDL	Run 1	Run2
	mg/dscm	2.9	<2.9	<2.9
Sulphur Dioxide (SO2)	g/s	0.0019	<0.0019	<0.0019
	mg/dscm at 15% O₂	1.5	<1.5	<1.5
	g/s at 15% O2	0.001	<0.001	<0.001
	mg/dscm	0.13	170	160
Nitrogen Monoxide	g/s	0.000091	0.12	0.11
(NO)	mg/dscm at 15% O₂	0.069	90	82
(/	g/s at 15% O2	0.000047	0.061	0.056
	mg/dscm	0.21	37	61
Nitrogon Diovido (NO-)	g/s	0.00014	0.025	0.041
Nitrogen Dioxide (NO ₂)	mg/dscm at 15% O₂	0.11	19	31
	g/s at 15% O2	0.000073	0.013	0.021
	mg/dscm	0.41	300	300
Oxides of Nitrogen	g/s	0.00028	0.21	0.21
(NO _x)	mg/dscm at 15% O₂	0.21	160	160
	g/s at 15% O2	0.00015	0.11	0.11
	mg/dscm	0.13	590	590
Carbon Monoxide (CO)	g/s	0.000085	0.4	0.4
	mg/dscm at 15% O₂	0.065	310	310
	g/s at 15% O2	0.000044	0.21	0.21
Oxygen (O2)	%	0.01	9.5	9.5
Carbon Dioxide (CO ₂)	%	0.01	6	6.1

Clean Energy Fuels Australia Pty Ltd Mt Magnet Emissions Monitoring Report Number: 2425-119 Version Number: 1.0

3.5 GENERATOR 2 CHART

3.6 GENERATOR 3 - RESULTS

Table vi: Results Summary Generator 3


	MDL		Ru	ın 1	Run2	
Parameter			Emission Concentration	Mass Emission Rate	Emission Concentration	Mass Emission Rate
Uni	s mg/dscm	g/s	mg/dscm	g/s	mg/dscm	g/s
Formaldehyde	0.33	0.00023	8.4	0.0059	8.1	0.0055
Formaldehyde at 15% O2	0.093	0.00012	4.5	0.0031	4.5	0.0030

Analyte	Units	MDL	Run 1	Run2
Sulphur Dioxide (SO2)	mg/dscm	2.9	<2.9	<2.9
	g/s	0.002	<0.002	<0.002
	mg/dscm at 15% O₂	1.5	<1.5	35
	g/s at 15% O2	0.0011	<0.0011	0.024
	mg/dscm	0.13	170	180
Nitrogen Monoxide	g/s	0.000093	0.12	0.12
(NO)	mg/dscm at 15% O₂	0.071	95	90
	g/s at 15% O2	0.000049	0.066	0.61
	mg/dscm	0.21	53	55
Nitragan Diavida (NO.)	g/s	0.00014	0.037	0.037
Nitrogen Dioxide (NO ₂)	mg/dscm at 15% O₂	0.11	28	28
	g/s at 15% O2	0.000076	0.02	0.02
	mg/dscm	0.41	320	320
Oxides of Nitrogen	g/s	0.00029	0.22	0.22
(NO _x)	mg/dscm at 15% O₂	0.22	170	170
	g/s at 15% O2	0.00015	0.12	0.11
	mg/dscm	0.13	530	610
Carbon Monoxide (CO)	g/s	0.000087	0.37	0.41
carbon wonoxide (CO)	mg/dscm at 15% O₂	0.066	280	310
	g/s at 15% O2	0.000046	0.20	0.21
Oxygen (O2)	%	0.01	9.7	9.4
Carbon Dioxide (CO2)	%	0.01	5.9	5.8

Clean Energy Fuels Australia Pty Ltd Mt Magnet Emissions Monitoring Report Number: 2425-119 Version Number: 1.0

3.7 GENERATOR 3 CHART

3.8 GENERATOR 4 - RESULTS

Table vii: Results Summary Generator 4

			Run 1		Run2	
Parameter	MDL		Emission Concentration	Mass Emission	Mass Fmis	
				Rate	Concentration	
Unit	s mg/dscm	g/s	mg/dscm	g/s	mg/dscm	g/s
Formaldehyde	0.36	0.00025	9.8	0.0069	5.9	0.0041
Formaldehyde at 15% O ₂	0.19	0.00013	5.1	0.0036	3.0	0.0021

Analyte	Units	MDL	Run 1	Run2
	mg/dscm	2.9	<2.9	<2.9
Sulphur Diovida (SO)	g/s	0.002	<0.002	<0.002
Sulphur Dioxide (SO ₂)	mg/dscm at 15% O₂	1.5	<1.5	<1.5
	g/s at 15% O2	0.001	<0.001	<0.001
	mg/dscm	0.13	110	110
Nitrogen Monoxide	g/s	0.000094	0.079	0.075
(NO)	mg/dscm at 15% O₂	0.069	59	55
	g/s at 15% O2	0.000049	0.041	0.039
	mg/dscm	0.21	140	150
Nitrogon Diovido (NO-)	g/s	0.00014	0.098	0.11
Nitrogen Dioxide (NO ₂)	mg/dscm at 15% O₂	0.11	72	78
	g/s at 15% O2	0.000075	0.051	0.055
	mg/dscm	0.41	310	310
Oxides of Nitrogen	g/s	0.00029	0.22	0.22
(NO _x)	mg/dscm at 15% O2	0.21	160	160
	g/s at 15% O2	0.00015	0.11	0.11
	mg/dscm	0.13	600	590
Carbon Monovida (CO)	g/s	0.000088	0.42	0.41
Carbon Monoxide (CO)	mg/dscm at 15% O₂	0.065	310	300
	g/s at 15% O2	0.000045	0.22	0.21
Oxygen (O2)	%	0.01	9.4	9.4
Carbon Dioxide (CO2)	%	0.01	6.4	6.4

Clean Energy Fuels Australia Pty Ltd Mt Magnet Emissions Monitoring Report Number: 2425-119 Version Number: 1.0

NOX (as NO2) [mg/dscm at 15% O2] - CO [mg/dscm at 15% O2] SO2 [mg/dscm at 15% O2] Generator 4 - 1 & 2: Combustion Gas Concentrations **0**2 [%] - CO2 [%] 350 10 9 300 8 250 7 Concentration (NOx, CO, SO2) Concentration (CO2, O2) 6 200 5 150 4 3 100 2 50 1 0 0 10/12/24

3.9 GENERATOR 4 CHART

4 OPERATIONAL CONDITIONS

Plant operational conditions were noted for each test period and date provided by Clean Energy Fuels Australia Pty Ltd is listed in **Table viii**.

Source	Date	Duration	Test	MW
Generator 1	10/12/2024	8:13 - 8:43	Formaldehyde - Run 1	1450
Generator 1	10/12/2024	8:48 - 9:18	Formaldehyde - Run 2	1450
Commente	10/12/2024	9:47 – 10:17	Formaldehyde - Run 1	1450
Generator 2		10:22 – 1 0:52	Formaldehyde - Run 2	1450
Commente a 2	10/12/2024	14:12 - 14:42	Formaldehyde - Run 1	1450
Generator 3	10/12/2024	15:48 - 15:18	Formaldehyde - Run 2	1450
Commente	10/12/2024	15:54 – 16:24	Formaldehyde - Run 1	1200
Generator 4		16:30 - 17:00	Formaldehyde - Run 2	1200

5 VARIATIONS TO PROTOCOLS

None. All QA/QC passed requirements.

6 SAMPLING METHODOLOGY

Details of the parameters/analytes used to conduct the program and the standard measurement uncertainties for each method are calculated and listed in Table x .

Parameter/Analyte	Sampling Method	NATA Ac	Uncertainty	
Falameter/Analyte	Sampling Method	Sampling	Analysis	(±%)
Sample Point Locations	AS4323.1	Y	N/A	n/a
Stack Velocity and Volumetric Flow Rate	USEPA Method 2	Y	N/A	8
Oxygen (O ₂)	USEPA Method 3A	Y	Y	8
Carbon dioxide (CO ₂)	USEPA Method 3A	Y	Y	8
Moisture (H ₂ O)	USEPA Method 4	Y	Y	6
Sulphur dioxide (SO ₂)	USEPA Method 6C	Y	Y	10
Oxides of nitrogen (NO _x as NO ₂)	USEPA Method 7E	Y	Y	12
Carbon monoxide (CO)	USEPA Method 10	Y	Y	9
Formaldehyde	USEPA Method 323	Y	Y	21

Table ix: NATA accreditation status and Standard measurement uncertainties for sampling methods

7 **REPORTING LIMITATIONS**

The following protocols are used for calculations and reporting data:

- All data generated from analytical laboratories are received to two significant figures.
- All calculations are performed on unrounded data.
- All particulate determinations are reported to two significant figures.
- All gaseous data is reported to two significant figures.
- Percentage concentrations are reported to one decimal place.
- Temperature is rounded to the nearest whole number.
- Gas exhaust flows are rounded to the nearest whole number.

8 DEFINITIONS

<	Less than Balayy Method Datastian Limit
<result ></result 	Below Method Detection Limit Greater than
< <	Less than or equal to
°C	Degrees Celsius
acm	Actual cubic metre
acm/min	
	Actual cubic metres per minute
dscm	Dry standard cubic metre
dscm/min	Dry standard cubic metres per minute
g/dscm	Grams per dry standard cubic meter
g/g-mole	Gram per gram-mole
g/hr	Grams per hour
g/min	Grams per minute
g/s	Grams per second
kg/hr	Kilograms per hour
kg/min	Kilograms per minute
kg/s	Kilograms per second
MDL	Method detection limit $MDL = \frac{PQL}{Dry Standard VolumeRM}$
	Dry Standard V Stantestin
mg/dscm	Milligrams per dry standard cubic meter
mg/hr	Milligrams per hour
mg/min	Milligrams per minute
mg/s	Milligrams per second
m/sec	Metres per second
NA	Not applicable
ng/m³	Nanograms per cubic metre
NATA	National Association of Testing Authorities
PM ₁₀	Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 μm
PM _{2.5}	PM2.5 Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 μm
ppm	Parts per million
PQL	Practical quantitation limit - lowest practically quantifiable detection limit of an analyte reported by analytical laboratory
	Relative Accuracy $RA = \frac{ \vec{a} + cc }{RM} \times 100$
RA	Relative Accuracy $RA = \frac{100}{RM} \times 100$
	d = Arithmetic mean of the differences between paired RM and PEMS observations
	cc = Confidence coefficient.
RATA	Relative accuracy test audit
RM	Reference method
STP	Standard temperature and pressure.
USEPA	United States Environmental Protection Agency
μm	Micrometres or microns
µg /hr	Micrograms per hour
µg /min	Micrograms per minute
μg/s	Micrograms per second
v/v %	Volume to volume ratio as percentage

The following units of measurement and terminology potentially used within the report are listed below:

APPENDIX A

Sampling Methods Employed

Testing Program Scope

SELECTION OF SAMPLING POSITIONS

Prior to initiating the sampling program, each source was evaluated for representativeness. The application of the "preliminary methods" involves an assessment of the sampling plane using established Australian Standards and USEPA Methods. The sampling plane of each source was evaluated daily to ensure that the most representative sample point selection had been employed. These methods must be applied correctly to ensure that sampling is conducted representatively across the sampling plane.

STACK GAS VELOCITY AND FLOW RATE

Stack gas velocity was determined through differential pressure (ΔP) and stack temperature measurements using a calibrated S-type pitot tube with integrated temperature sensor and a pressure sensor (manometer). The differential pressure and temperature measurements were correlated with the absolute stack gas pressure, dry gas molecular weight, pitot tube velocity constant and pressure coefficients, to calculate stack gas velocity. The average stack gas velocity is correlated with the cross-sectional area of the measurement location to derive a volumetric flow.

MOISTURE

Moisture sampling was conducted in conjunction with each test. A sample of gas was continuously withdrawn through a sample probe into a series of pre-weighed midget impingers containing high purity de-ionised water and finally silica gel to remove the moisture content of the sample gas. Each impinger was weighed post-test to determine the mass of water collected over the sample duration. For each test the volume of gas sampled was measured using a dry gas meter and used to calculate a percentage stack moisture content by correlation with the mass of water collected.

GASEOUS PARAMETERS

Gaseous parameters were determined using a Testo 350 electrochemical portable gas analyser. A continuous gas sample was extracted from the emission source. Gases were conditioned through a refrigerated process to eliminate moisture. The conditioned gas was then presented to the gas analyser and continuously data-logged for oxygen, carbon monoxide, carbon dioxide, sulphur dioxide and oxides of nitrogen.

FORMALDEHYDE (USEPA METHOD 323)

A non-isokinetic emission sample taken from the combustion exhaust is drawn through a midget impinger train containing chilled reagent water to absorb formaldehyde. The set sampling flow rate is dependent upon the anticipated concentration of formaldehyde in the engine exhaust, to ensure collection efficiency. The chilled samples are sent to Sydney Water for NATA accredited analysis.

The equipment and condumables required for the formaldehyde sampling process include a stainless steel sampling probe and sheath. Teflon tubing is used to connect the sample probe to the impinger train, and a heated sample line is unnecessary due to the rinsing of the sample transfer system to recover condensed formaldehyde. Three midget impingers are used for sample collection, with the first serving as a moisture knockout, the second containing 20 mL of reagent high perity water, and the third containing silica gel to remove residual moisture before reaching the dry gas meter (An additional reagent midget impinger was used to ensure no breakthrough). A vacuum pump delivers controlled extraction flow rate, along with a rotameter to indicate consistent sample flow. Additionally, a dry gas meter with sufficient accuracy to measure the

sample volume within 2 percent, calibrated at the selected flow rate, and equipped with a temperature sensor is used.

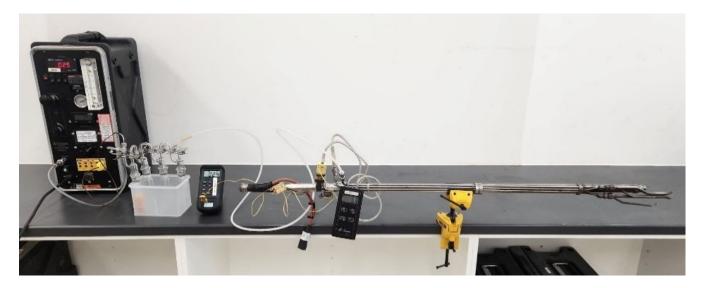


Image i: USEPA Method 323 Formaldehyde sampling train

APPENDIX B

Analytical Report and Chain of Custody

Formaldehyde (NMI)

130EC 2024 11:01

C A

13 DEC 2024 11:01

17

Australian Government

Department of Industry, Science and Resources

National Measurement Institute

REPORT OF ANALYSIS

			Page: 1 of 4
			Report No. RN1451622
Client :	EMISSION ASSESSMENTS PTY LTD	Job No.	: EMIS02/241213
	UNIT 6 / 35 SUSTAINABLE AVENUE	Quote No.	: QT-02257
	BIBRA LAKE WA 6163	Order No.	-
		Date Received	: 13-DEC-2024
Attention :	BRYAN GRANT	Sampled By	: CLIENT
Project Name :			
Your Client Ser	vices Manager : Tim Reddan	Phone	: 03 9644 4854
Lab Reg No.	Sample Ref	Sample Description	
N24/025696	2425119-001	DI H2O GENERATOR 1_M323_RUN	1
N24/025697	2425119-002	DI H2O GENERATOR 1_M323_RUN	2
N24/025698	2425119-003	DI H2O GENERATOR 2_M323_RUN	1
N24/025699	2425119-004	DI H2O GENERATOR 2_M323_RUN	2

Lab Reg No.		N24/025696	N24/025697	N24/025698	N24/025699	
Date Sampled		10-DEC-2024	10-DEC-2024	10-DEC-2024	10-DEC-2024	
Sample Reference		2425119-001	2425119-002	2425119-003	2425119-004	
	Units					Method
Subcontracted				-		
Formaldehyde	ug/L	976	1420	1130	1900	
Report Number		317272	317272	317272	317272	

Formaldehyde determined by Sydney Water Laboratory West Ryde 2114 Method - TC006WHL NATA Corporate Accreditation Number 63

Laboratory Services

02-JAN-2025

REPORT OF ANALYSIS

				Page: 2 of 4
				Report No. RN145162
Client :	EMISSION ASSESSMENTS PTY LTD	Job No	o.	: EMIS02/241213
	UNIT 6 / 35 SUSTAINABLE AVENUE	Quote	No.	: QT-02257
	BIBRA LAKE WA 6163	Order	No.	:
		Date F	Received	: 13-DEC-2024
Attention :	BRYAN GRANT	Sample	ed By	: CLIENT
Project Name :				
Your Client Serv	vices Manager : Tim Reddan	Phone		: 03 9644 4854
Lab Reg No.	Sample Ref	Sample Description		
N24/025700	2425119-005	DI H2O GENERATOR 3_M32	23_RUN1	
N24/025701	2425119-006	DI H2O GENERATOR 3_M32	23_RUN2	2
N24/025702	2425119-007	DI H2O GENERATOR 4_M32	23_RUN1	
N24/025703	2425119-008	DI H20 GENERATOR 4 M32	DO DUND	

Lab Reg No.		N24/025700	N24/025701	N24/025702	N24/025703	
Date Sampled		10-DEC-2024	10-DEC-2024	10-DEC-2024	10-DEC-2024	
Sample Reference		2425119-005	2425119-006	2425119-007	2425119-008	
	Units					Method
Subcontracted						
Formaldehyde	ug/L	2580	2480	2750	1380	
Report Number		317272	317272	317272	317272	

Formaldehyde determined by Sydney Water Laboratory West Ryde 2114 Method - TC006WHL

NATA Corporate Accreditation Number 63

Laboratory Services

02-JAN-2025

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

REPORT OF ANALYSIS

			Page: 3 of 4
			Report No. RN1451622
Client	: EMISSION ASSESSMENTS PTY LTD	Job No.	: EMIS02/241213
	UNIT 6 / 35 SUSTAINABLE AVENUE	Quote No.	: QT-02257
	BIBRA LAKE WA 6163	Order No.	:
		Date Received	: 13-DEC-2024
Attention	: BRYAN GRANT	Sampled By	: CLIENT
Project Name	:		
Your Client Se	rvices Manager : Tim Reddan	Phone	: 03 9644 4854
Lab Reg No.	Sample Ref	Sample Description	
N24/025704	2425119-009	DI H20 GENERATOR 4_M323_BLAN	K

Lab Reg No.		N24/025704		
Date Sampled		10-DEC-2024		
Sample Reference		2425119-009		
	Units			Method
Subcontracted	<u>.</u>		·	
Formaldehyde	ug/L	<100		
Report Number		317272		

Formaldehyde determined by Sydney Water Laboratory West Ryde 2114 Method - TC006WHL

NATA Corporate Accreditation Number 63

Laboratory Services

02-JAN-2025

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) as received and tested.

* Denotes the analyte or test method is not within our ISO/IEC 17025 scope of accreditation.

Measurement Uncertainty is available upon request.

Note: Sampling date(s) have been provided by the client. 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

REPORT OF ANALYSIS

The testing was undertaken at:

105 Delhi Road, North Ryde, NSW, 2113

Page: 4 of 4 Report No. RN1451622

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Corporate Accreditation No 63

Accredited for compliance with ISO/IEC 17025 - Testing

Sydney WATER

Laboratory Services

John Confection Confection	Delivery Address:	Sydney Water Corporation 51 Hermitage Rd West Ryde NSW 2114
	Telephone: Email:	(02) 9800 6935 analyticalservices@sydneywater.com.au
	Address 105 Do	Ibi Bood, North Budo NSW 2112

Attention:	Ilona Narouta	Address:	105 Delhi Road, North Ryde NSW 2113
Customer:	National Measurement Institute	Telephone:	02 9449 0193
Customer ID:	ZNMI	Email:	llona.Narouta@measurement.gov.au

CONTENTS

Issue Date:

Issued By :

1. Sydney Water Approved Signatory

Analytical Report 317272

19/12/2024

Sydney Water Laboratory Services

- 2. Sample Summary
- 3. Analytical results
- 4. Comments
- 5. Laboratory QC results

Sydney Water Approved Signatory

Justice Esoun-Nyarkoh, Organics Analyst

Where a result is required to meet a compliance limit or specification the associated uncertainty must be considered. Uncertainty estimates are available for all accredited test results.

SAMPLE SUMMARY

<u>Client</u> Sample ID	<u>Sample</u> Number	<u>Sampling</u> <u>Procedure</u>	<u>Date</u> Sampled	<u>Date</u> <u>Received</u>	<u>Date</u> Authorised	Description
N24/025696	L24106324	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_1_M323_RUN1
N24/025697	L24106325	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_1_M323_RUN2
N24/025698	L24106326	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_2_M323_RUN1
N24/025699	L24106327	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_2_M323_RUN2
N24/025700	L24106328	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_3_M323_RUN1
N24/025701	L24106329	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_3_M323_RUN2
N24/025702	L24106330	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_4_M323_RUN1
N24/025703	L24106331	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_4_M323_RUN2
N24/025704	L24106332	1	10/12/2024	16/12/2024	18/12/2024	DI H2O GENERATOR_4_M323_BLANK

Sampling procedures

1 Samples analysed as received.

2 Samples collected as per FS procedures SAWI 070, Excluding Oil & Grease which is collected as per clients instructions.

3 Samples collected as per FS procedures SAWI 070.

4 Results reported as received from WNSW.

ANALYTICAL RESULTS

Client Sample ID		N24/025696	N24/025697	N24/025698	N24/025699	N24/025700	N24/025701	N24/025702	N24/025703		
Sampled Date		10/12/2024 12:00:00 AM									
Sample Number		L24106324	L24106325	L24106326	L24106327	L24106328	L24106329	L24106330	L24106331		
ORGANICS	PIGANICS										
TC006WHL : Carbonyls (Ald	ehydes and Ket	ones)									
Formaldehyde	ug/L	976	1420	1130	1900	2580	2480	2750	1380		
Acetaldehyde	ug/L	<100	<100	<100	<100	<100	<100	<100	<100		
Propionaldehyde	ug/L	<100	<100	<100	<100	<100	<100	<100	<100		
Gluteraldehyde	ug/L	<100	<100	<100	<100	<100	<100	<100	<100		
Total Detectable Aldehydes	ug/L	976	1420	1130	1900	2580	2480	2750	1380		
Date of Performance	DD/MM/YY	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24		
TC06PW : Sample Prep for Organics analysis											
Aldehydes & Ketones in Prep Water	N/A	Done									
Date of Performance	DD/MM/YY	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24	17/12/24		

Client Sample ID		N24/025704							
Sampled Date		10/12/2024 12:00:00 AM							
Sample Number		L24106332							
ORGANICS									
TC006WHL : Carbonyls (Alder	ydes and Ket	ones)							
Formaldehyde	ug/L	<100							
Acetaldehyde	ug/L	<100							
Propionaldehyde	ug/L	<100							
Gluteraldehyde	ug/L	<100							
Total Detectable Aldehydes	ug/L	<100							
Date of Performance	DD/MM/YY	17/ <mark>1</mark> 2/24							
TC06PW : Sample Prep for Organics analysis									
Aldehydes & Ketones in Prep Water	N/A	Done							
Date of Performance	DD/MM/YY	17/12/24							

COMMENTS

LABORATORY QC RESULTS

N/A - Not Applicable PQL - Practical Quantitation Limit LOQ - Limit of Quantification RPD - Relative Percent Difference SPIKE/Positive Control - Addition of a known amount and concentration Duplicate Precision = Accepted - Result 2 within 95% confidence limits of result 1 Duplicate Precision = Outlier - Result 2 outside 95% confidence limits of result 1 Duplicate Precision = Not calculated - Result is outside test range

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
C006WHL Acetaldehyde						
<100 ug/L	<100	109	105 % Recovery	<100	<100	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C006WHL Formaldehyde						
<100 ug/L	<100	110	109 % Recovery	<100	<100	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC006WHL Gluteraldehyde						
<100 ug/L	<100	89.3	93.6 % Recovery	<100	<100	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C006WHL Propionaldehyd	e					
<100 ug/L	<100	103	100 % Recovery	<100	<100	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C006WHL Total Detectable	Aldehydes					
<100 ug/L	F	С	E	<100	<100	В
						0.0 - 0.0 %

Extra Note:

B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ

E: Spike is not applicable for this analyte

F: Blank is not applicable for this analyte

C: Standard/Control is not applicable for this analyte