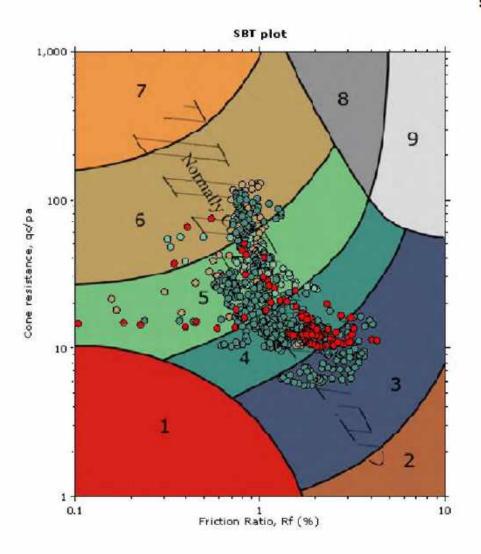
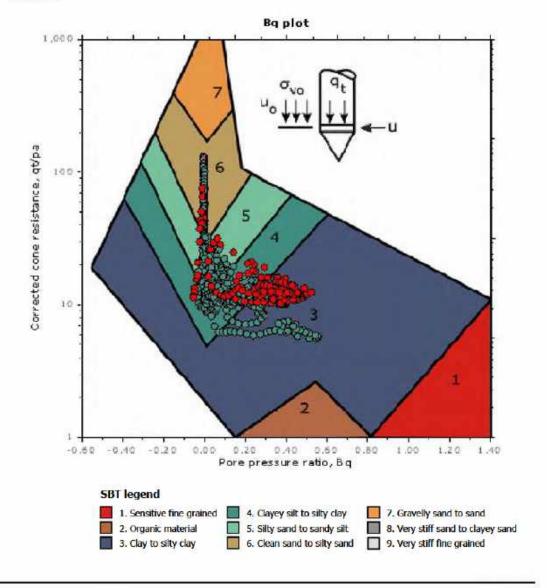
Knight Piésold Consulting Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia


CPT: KP CPT07A


Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

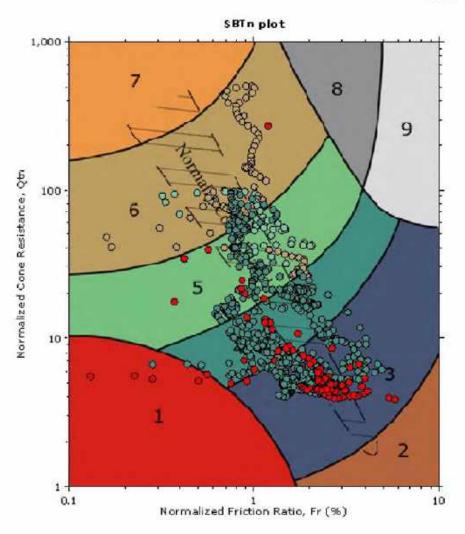
Cone Type: 180911

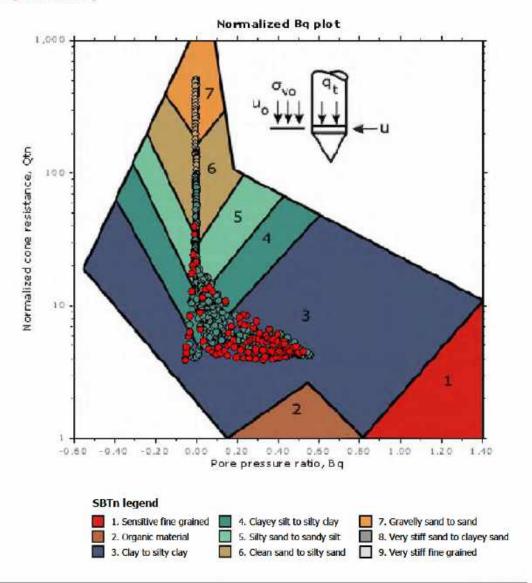
Cone Operator: Hagstrom Drilling

SBT - Bq plots

delaide Terrace CPT: KP CPT07A

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°


Cone Type: 180911


Cone Operator: Hagstrom Drilling

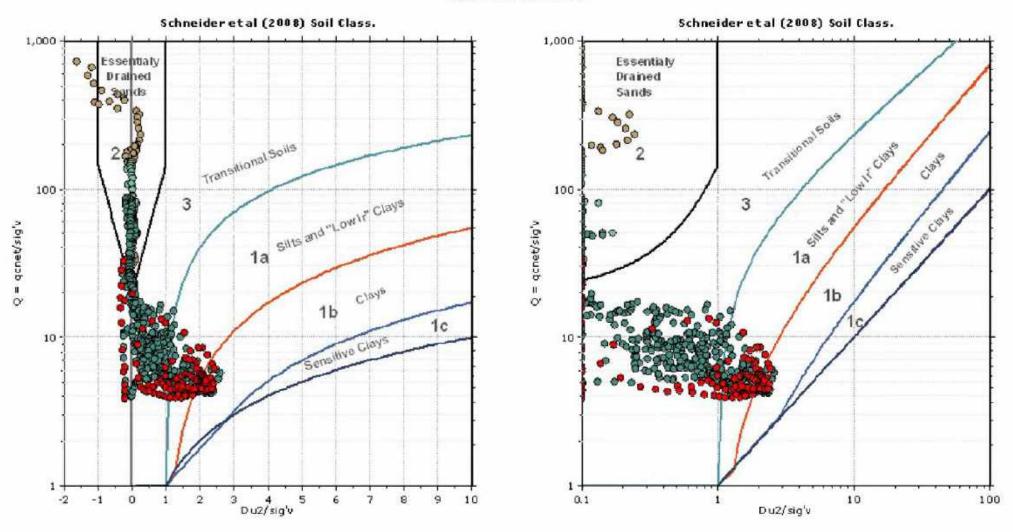
Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

SBT - Bq plots (normalized)

CPT: KP CPT07A

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°


Cone Type: 180911

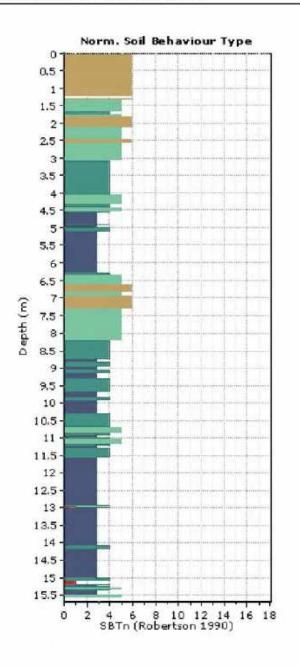
Cone Operator: Hagstrom Drilling

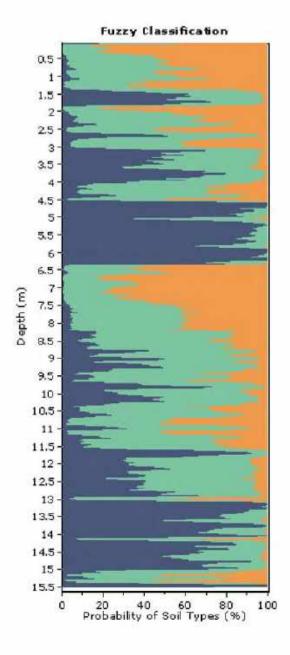
Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

Bq plots (Schneider)

CPT: KP CPT07A


Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°


Cone Type: 180911

Cone Operator: Hagstrom Drilling

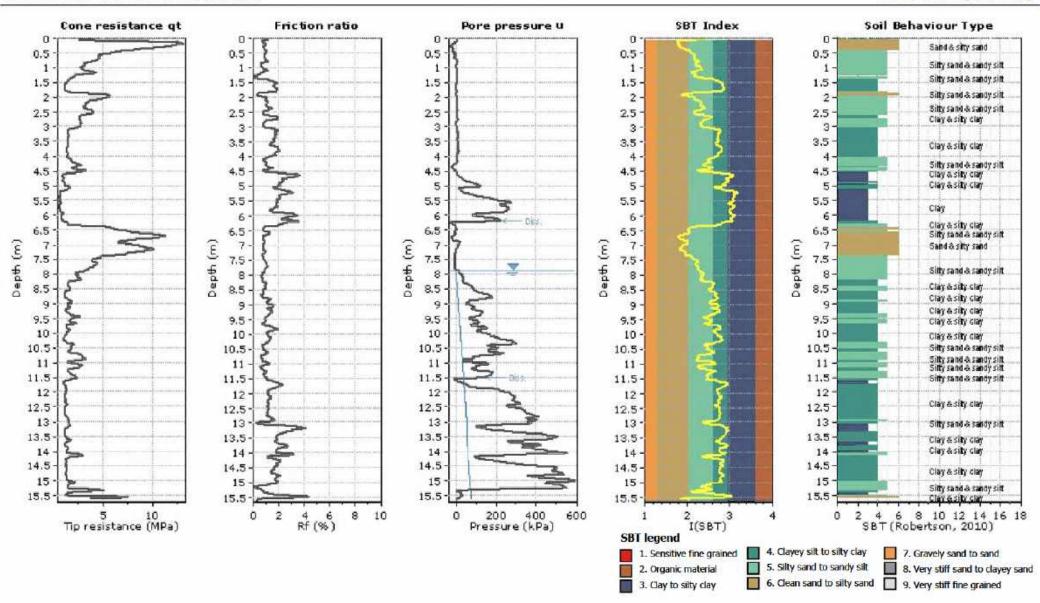
Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

Knight Piésold Level 1,

Knight Piésold Consulting

Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

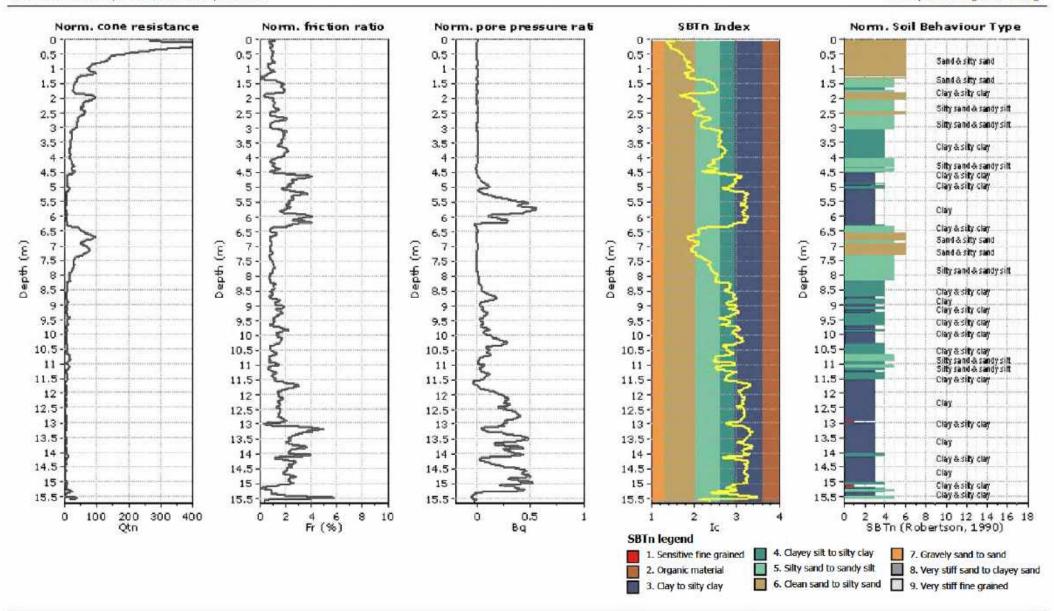
CPT: KP CPT07A

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

Cone Type: 180911

Knight Piésold Consulting Knight Piésold Level 1, 184 Adelaide Terrace Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

СРТ: КР СРТО7А


Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

Cone Type: 180911

Cone Operator: Hagstrom Drilling

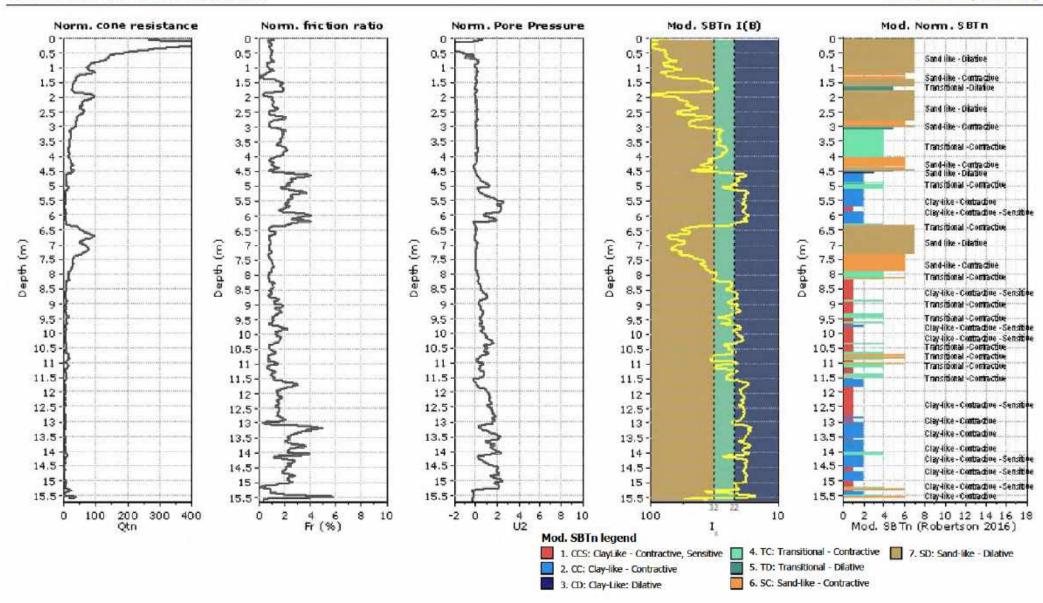
Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

Knight Piésold Level 1, 184 CONSULTING Perth WA 60

Knight Piésold Consulting

Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

CPT: KP CPT07A

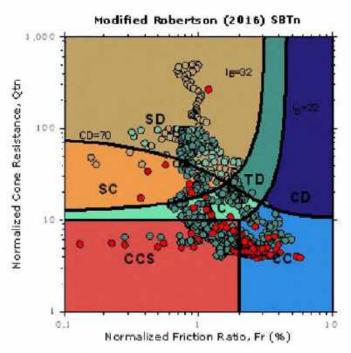
Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

Cone Type: 180911

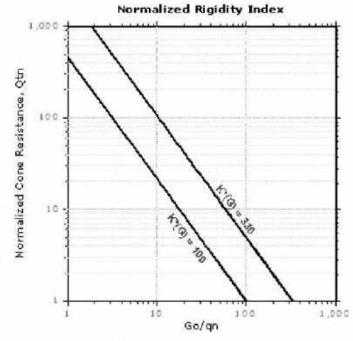
Project: Thunderbox Gold Mine

I ovel 1 184 Adelaide Terrace

CPT: KP CPT07A


Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°


Cone Type: 180911


Cone Operator: Hagstrom Drilling

Location: Leinster, Western Australia, Australia

Updated SBTn plots

K(G) > 330: Soils with significant microstructure (e.g. age/cementation)

CCS: Clay-like - Contractive - Sensitive

CC: Clay-like - Contractive

CD: Clay-like - Dilative

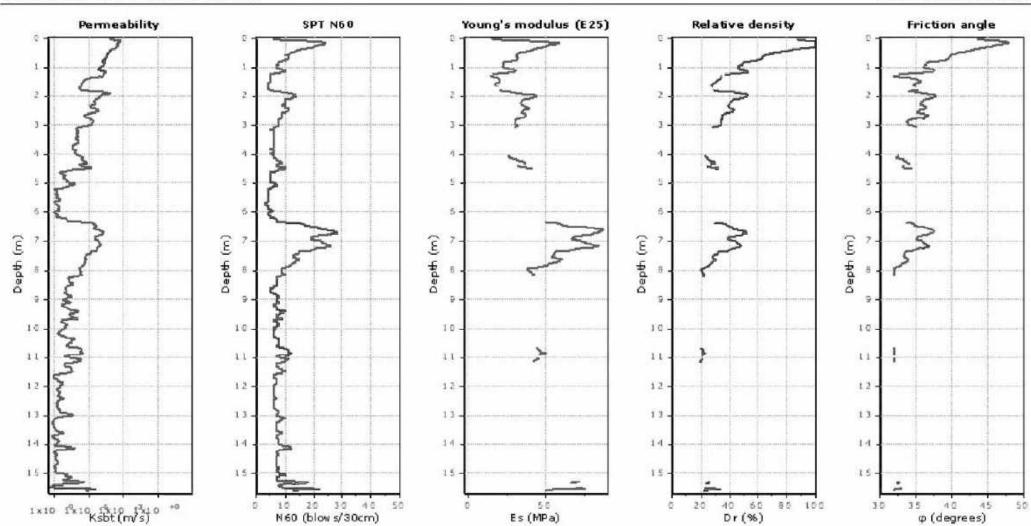
TC: Transitional - Contractive
TD: Transitional - Dilative

ID: Transitional - Dilative SC: Sand-like - Contractive

SD: Sand-like - Dilative

Knight Piésold Consulting Knight Piésold Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

Project: Thunderbox Gold Mine


Location: Leinster, Western Australia, Australia

CPT: KP CPT07A

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

Cone Type: 180911

Cone Operator: Hagstrom Drilling

Calculation parameters

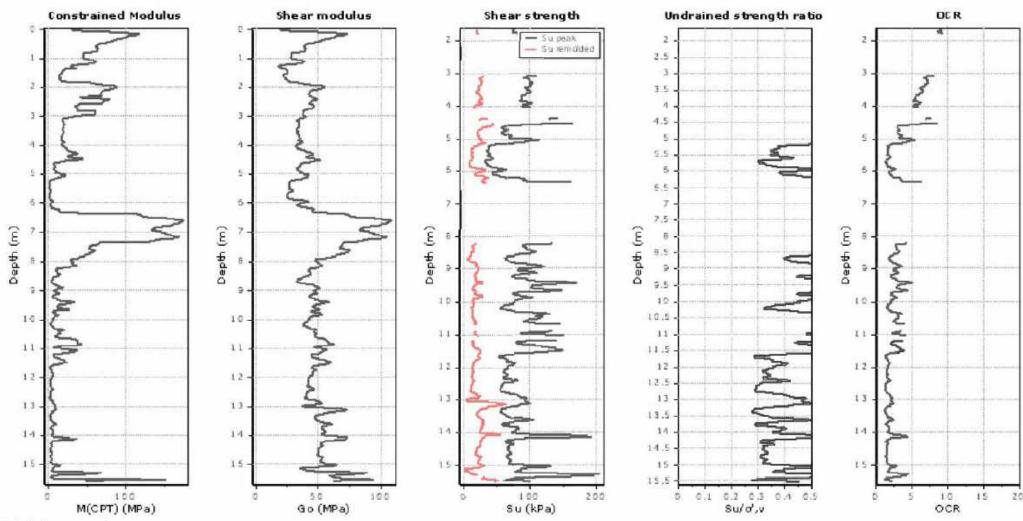
Permeability: Based on SBT, SPT Noo: Based on Ic and Qt

Young's modulus: Based on variable alpha using L (Robertson, 2009)

Relative density constant, Cor.: 350.0 Phi: Based on Kulhawy & Mayne (1990) User defined estimation data

Knight Piésold Consulting Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

CPT: KP CPT07A


Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

Cone Type: 180911

Cone Operator: Hagstrom Drilling

Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

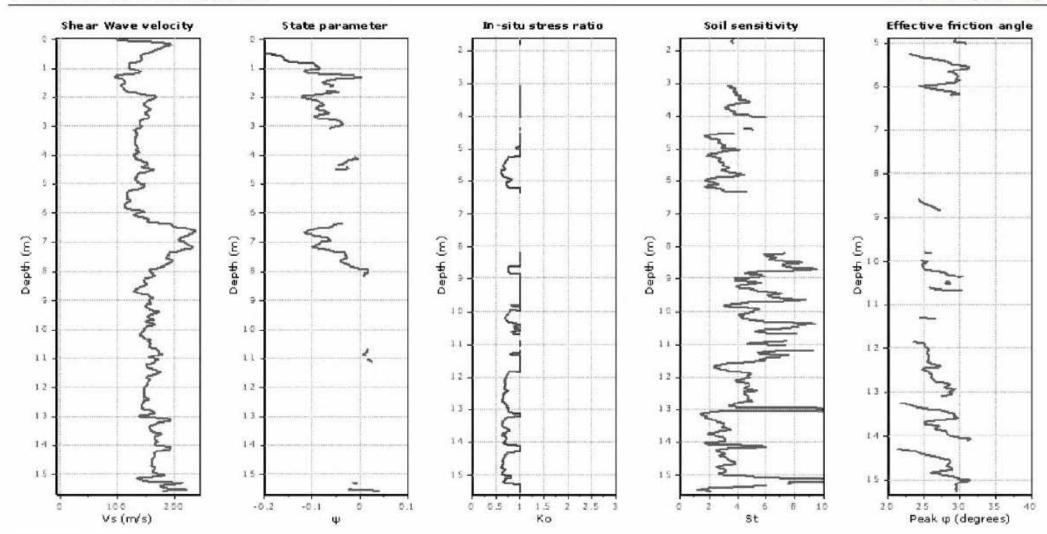
Calculation parameters

Constrained modulus: Based on variable alpha using $\, {
m I}_c \,$ and $\, {
m Q}_{tn} \,$ (Robertson, 2009)

Go: Based on variable alpha using I_c (Robertson, 2009) Undrained shear strength cone factor for days, N_c: 14 OCR factor for clays, N_k: 0.33

User defined estimation data
 Flat Dilatometer Test data

Knight Piésold Consulting Knight Piésold Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

CPT: KP CPT07A

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

> Cone Type: 180911 Cone Operator: Hagstrom Drilling

Location: Leinster, Western Australia, Australia

Calculation parameters

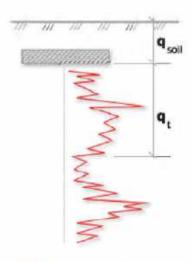
Sol Sensitivity factor, Ns: 7.00

— User defined estimation data

Knight Piésold Consulting

CONSULTING http://www.knightpiesold.com/

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

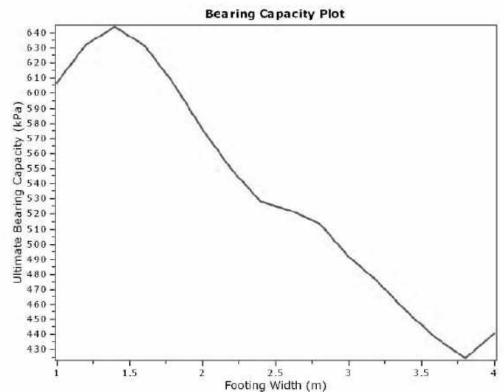

Cone Type: 180911

CPT: KP CPT07A

Cone Operator: Hagstrom Drilling

Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia



Bearing Capacity calculation is perfromed based on the formula:

$$Q_{ult} = R_k \times q_t + q_{soil}$$

where:

Rk: Bearing capacity factor q: Average corrected cone resistance over calculation depth q_{sal}: Pressure applied by soil above fooling

Tabula	or results ::	:						
No	В (m)	Start Depth (m)	End Depth (m)	Ave. q _t (MPa)	Rk	Soil Press. (kPa)	Ult. bearing cap. (kPa)	
1	1.00	0.50	2.00	2.99	0.20	9.50	606.66	
2	1.20	0.50	2.30	3.11	0.20	9.50	632.22	
3	1.40	0.50	2.60	3.17	0.20	9.50	644,00	
4	1.60	0.50	2.90	3.11	0.20	9.50	631.14	
5	1.80	0.50	3.20	2.98	0.20	9.50	606.21	
6	2.00	0.50	3.50	2.83	0.20	9.50	575.72	
7	2.20	0.50	3.80	2.70	0.20	9.50	549.36	
8	2.40	0.50	4.10	2.59	0.20	9.50	528.39	
9	2.60	0.50	4.40	2.56	0.20	9.50	522.12	
10	2.80	0.50	4.70	2.52	0.20	9.50	513.32	
11	3.00	0.50	5.00	2.41	0.20	9.50	492.00	
12	3.20	0.50	5.30	2.33	0.20	9.50	475.14	
13	3.40	0.50	5.60	2.23	0.20	9.50	455.43	
14	3.60	0.50	5.90	2.14	0.20	9.50	437.85	
15	3.80	0.50	6.20	2.07	0.20	9.50	424.31	
16	4.00	0.50	6.50	2.16	0.20	9.50	440.72	

Knight Piésold Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

Cone Type: 180911

CPT: KP CPT07A

Cone Operator: Hagstrom Drilling

Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

Dissipation Tests Results

Dissipation tests

Dissipation tests consists of stopping the piezocone penetration and observing porepressures (u) with elapsed time (t). The data are automatic recorded by the field computer and should take place until a minimum of 50% dissipation.

The porepressures are plotted as a function of square root of (t). The graphical technique suggested by Robertson and Campanella (1989), yields a value for t_{so}, which corresponds to the time for 50% consolidation.

The value of the coefficient of consolidation in the radial or horizontal direction ch was then calculated by Houlsby and Teh's (1988) theory using the following equation:

$$c_h = \frac{T \times r^2 \times I_r^{0.5}}{t_{50}}$$

where:

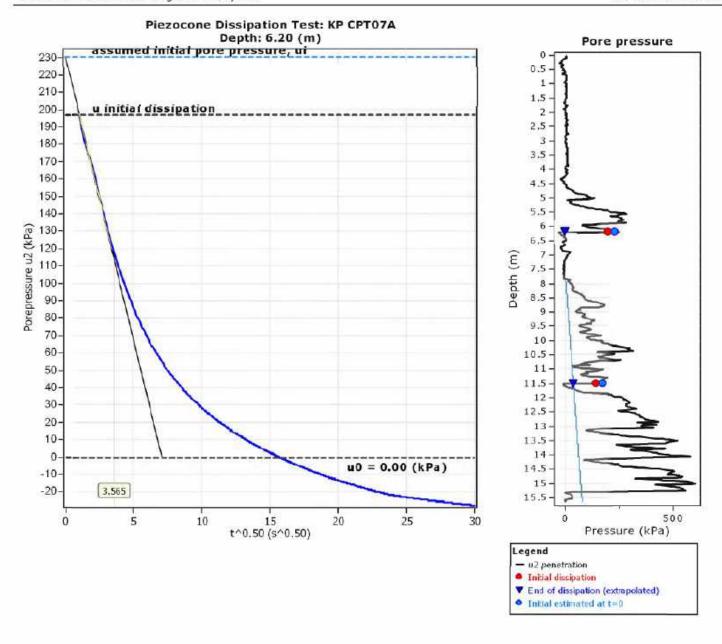
T: time factor given by Houlsby and Teh's (1988) theory corresponding to the porepressure position

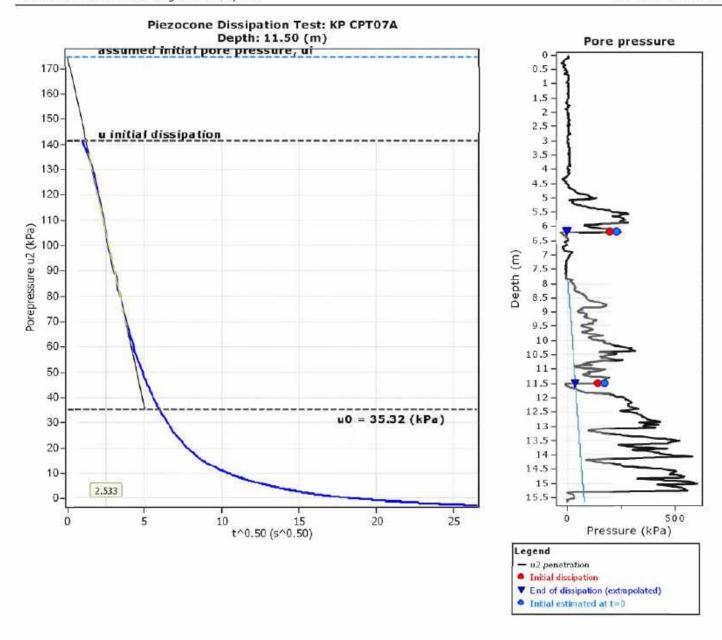
r: piezocone radius

I_r: stiffness index, equal to shear modulus G divided by the undrained strength of clay (S_u).

t_{so}: time corresponding to 50% consolidation

Permeability estimates based on dissipation test


The dissipation of pore pressures during a CPTu dissipation test is controlled by the coefficient of consolidation in the horizontal direction (c_h) which is influenced by a combination of the soil permeability (k_h) and compressibility (M), as defined by the following:


$$k_h = c_h \times \gamma_w/M$$

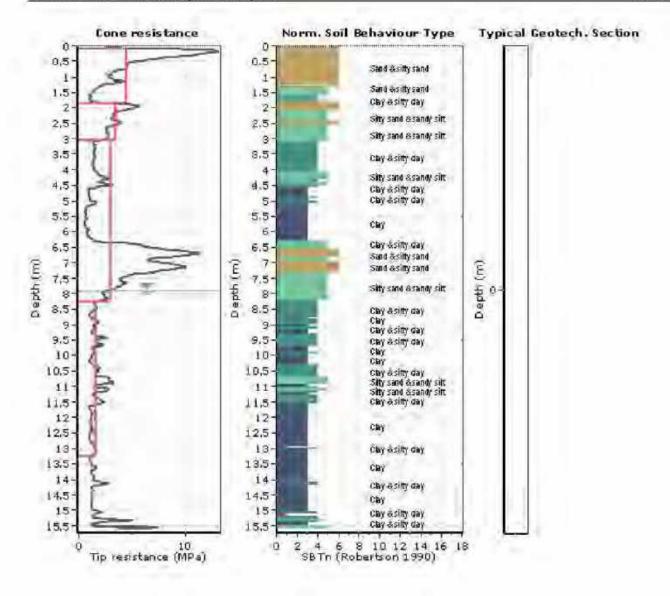
where: M is the 1-D constrained modulus and γ_w is the unit weight of water, in compatible units.

Tabular results

CPTU Borehole	Depth (m)	(t ₅₀) ^{0.50}	t ₅₀ (s)	t _{so} (years)	G/S _u	(m²/s)	C _h (m²/year)	M (MPa)	k _h (m/s)
КР СРТОТА	6.20	3.6	13	4.03E-007	100.00	6.11E-005	1926	9.70	6.18E-008
KP CPT07A	11.50	2.5	6	2.03E-007	100.00	1.21E-004	3817	29.03	4.09E-008

Knight Piésold Consulting

http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

CPT: KP CPT07A

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

Cone Type: 180911

Tabular results

.::	Lay	er	No	:	l ;;,
		-	***		

Code: Layer 1 Start depth: 0.06 (m), End depth: 1.84 (m)

Description: Sand & sity sand

Basic results

Total cone resistance: 4.43 ±3.48 MPa Sleeve friction: 39.95 ±31.20 kPa

Ic: 1.92 ±0.35 SBT_n: 6

SBTn description: Sand & silty sand

Estimation results

Permeability: 8.85E-05 ±1.60E-04 m/s

N₆₀: 10.03 ±5.87 blows Es: 29.99 ±11.57 MPa Dr (%): 58.47 ±24.40

φ (degrees): 38.91 ±4.40 ° Unit weight: 19.00 ±0.00 kN/m³ Constrained Mod.: 52.65 ±29.03 MPa

Go: 36,38 ±14.55 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00 .:: Layer No: 2 ::.

Code: Layer_2 Start depth: 1.84 (m), End depth: 3.04 (m)

Description: Silty sand & sandy silt

Basic results

Ic: 2.12 ±0.17

SBT_n: 5

Estimation results

Total cone resistance: 3.47 ±0.95 MPa Sleeve friction: 34.67 ±11.19 kPa

5BTn description: Silty sand & sandy silt

Pa Permeability: 7.79E-06 ±1.44E-05 m/s N₆₀: 9.89 ±1.76 blows

 N_{60} : 9.89 ±1.76 blows Go: 43.67 ±4.83 MPa Su: 0.00 ±0.00 kPa Dr (%): 40.23 ±6.03 Su ratio: 0.00 ±0.00 Φ (degrees): 35.68 ±1.10 ° O.C.R.: 0.00 ±0.00

Unit weight: 19.00 ±0.00 kN/m3

.:: Layer No: 3 ::.

Code: Layer_3 Start depth: 3.04 (m), End depth: 8.22 (m)

Description: Clay & silty day

Basic results

Estimation results

Total cone resistance: 2.96 ±2.82 MPa Sleeve friction: 33 24 ±21 51 kPa

Sleeve friction: 33.24 ±21.51 kPa Ic: 2.61 ±0.41

SBT_n: 4

SBTn description: Clay & silty clay

Permeability: 1.63E-06 ±3.71E-06 m/s Constrained Mod.: 45.18 ±52.54 MPa

 N_{50} : 9.89 ±6.75 blows Go: 50.72 ±23.79 MPa Es: 0.00 ±0.00 MPa Su: 73.74 ±29.00 kPa Dr (%): 0.00 ±0.00 Su ratio: 0.87 ±0.45 Φ (degrees): 0.00 ±0.00 ° O.C.R.: 4.02 ±2.07

Unit weight: 19.00 ±0.00 kN/m3

.:: Layer No: 4 ::.

Code: Layer_4 Start depth: 8.22 (m), End depth: 13.22 (m)

Description: Clay & silty day

Basic results

Total cone resistance: 1.53 ±0.49 MPa

Sleeve friction: 17.47 ±7.86 kPa Ic: 2.94 ±0.20

5BT_n: 4

SBTn description: Clay & silty clay

Estimation results

Permeability: 2.92E-08 ±5.31E-08 m/s

N₆₀: 7.37 ±1.44 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 φ (degrees): 0.00 ±0.00 ° Unit weight: 19.00 ±0.00 kN/m³ Constrained Mod.: 11.37 ±8.93 MPa

Constrained Mod.: 59.70 ±17.17 MPa

Go: 47.01 ±6.92 MPa Su: 88.03 ±25.09 kPa Su ratio: 0.51 ±0.16 O.C.R.: 2.35 ±0.76

Knight Piésold Consulting

http://www.knightpiesold.com/

Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

CPT: KP CPT07A

Total depth: 15.64 m, Date: 5/09/2020 Coords: lat 305898.1° lon 6879692.3°

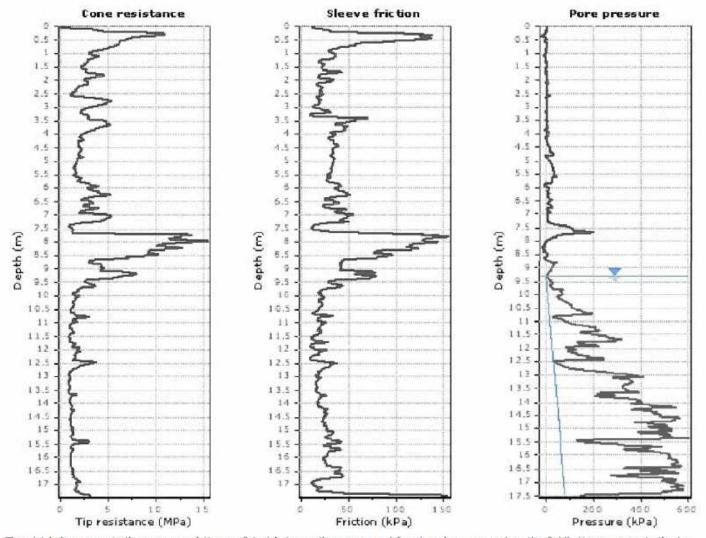
Cone Type: 180911

Cone Operator: Hagstrom Drilling

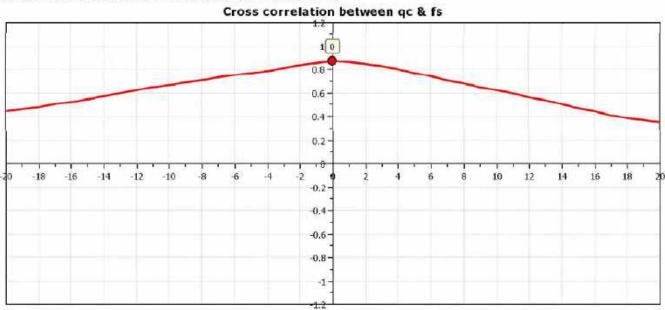
Summary table of mean values

From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E, (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, Go (MPa)	Undrained strength, S _u (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m³)
0.06	1.78	8.85E-05	10.0	30.0	58.5	38.9	52.6	36.4	0.0	0.0	0.0	19.0
1.84		(±1.60E-04)	(±5.9)	(±11.6)	(±24.4)	(±4.4)	(±29.0)	(±14.5)	(±0.0)	(±0.0)	(±0.0)	(±0.0)
1.84	1.20	7.79E-06	9.9	34.8	40.2	35.7	59.7	43.7	0.0	0.0	0.0	19.0
3.04	1.20	(±1.44E-05)	(±1.8)	(±3.9)	(±6.0)	(±1.1)	(±17.2)	(±4.8)	(±0.0)	(±0.0)	(±0.0)	(±0.0)
3.04	5.18	1.63E-06	9.9	0.0	0.0	0.0	45.2	50.7	73.7	0.9	4.0	19.0
8.22	3.10	(±3.71E-06)	(±6.7)	(±0.0)	(±0.0)	(±0.0)	(±52.5)	(±23.8)	(±29.0)	(±0.4)	(±2.1)	(±0.0)
8.22	5.00	2.92E-08	7.4	0.0	0.0	0.0	11.4	47.0	88.0	0.5	2.4	19.0
13.22		(±5.31E-08)	(±1.4)	(±0.0)	(±0.0)	(±0.0)	(±8.9)	(±6.9)	(±25.1)	(±0.2)	(±0.8)	(±0.0)

Depth values presented in this table are measured from free ground surface


Knight Piésold Consulting Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

СРТ: КР СРТ08


Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

> Cone Type: 180911 Cone Operator: Hagstrom Drilling

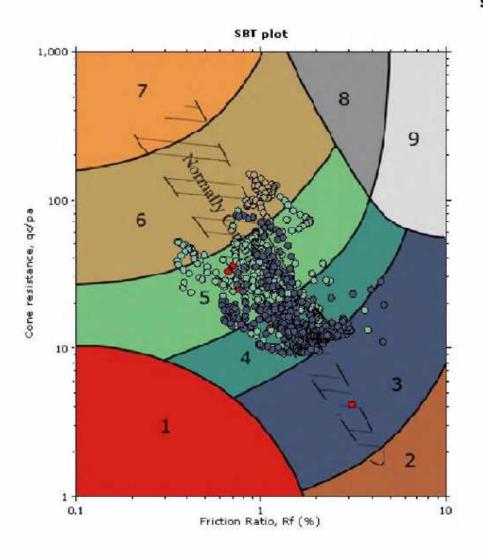
Project: Thunderbox Gold Mine
Location: Leinster, Western Australia, Australia

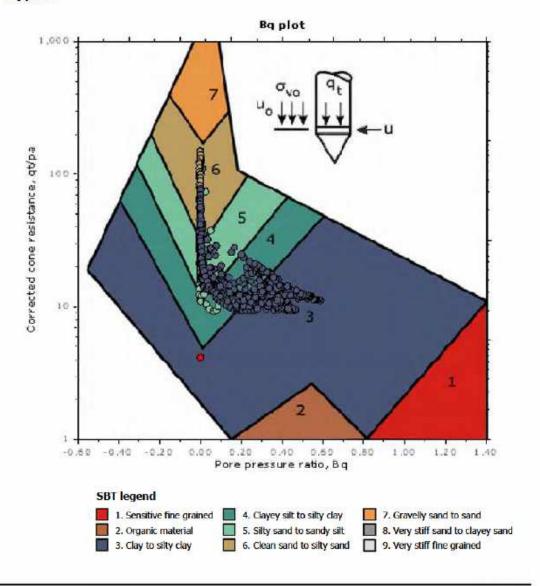
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT measurements).

Knight Piésold Consulting Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia


CPT: KP CPT08


Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

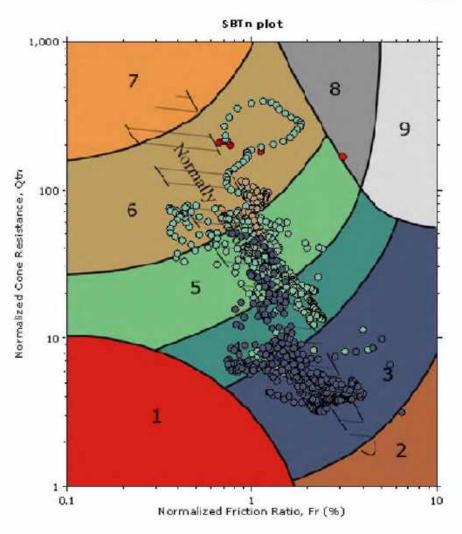
Cone Type: 180911

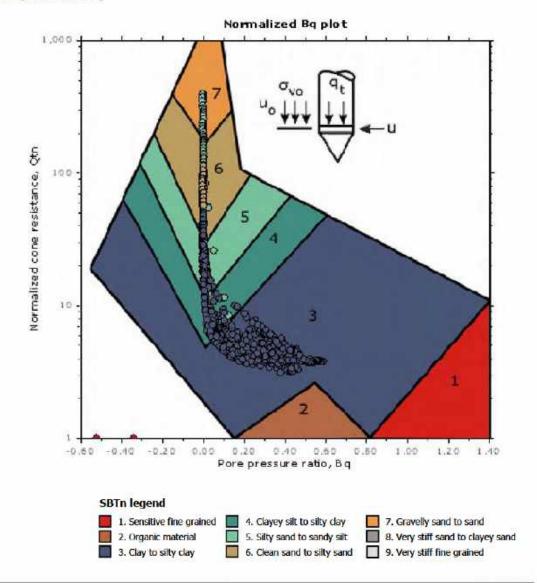
Cone Operator: Hagstrom Drilling

SBT - Bq plots

laide Terrace CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°


Cone Type: 180911


Cone Operator: Hagstrom Drilling

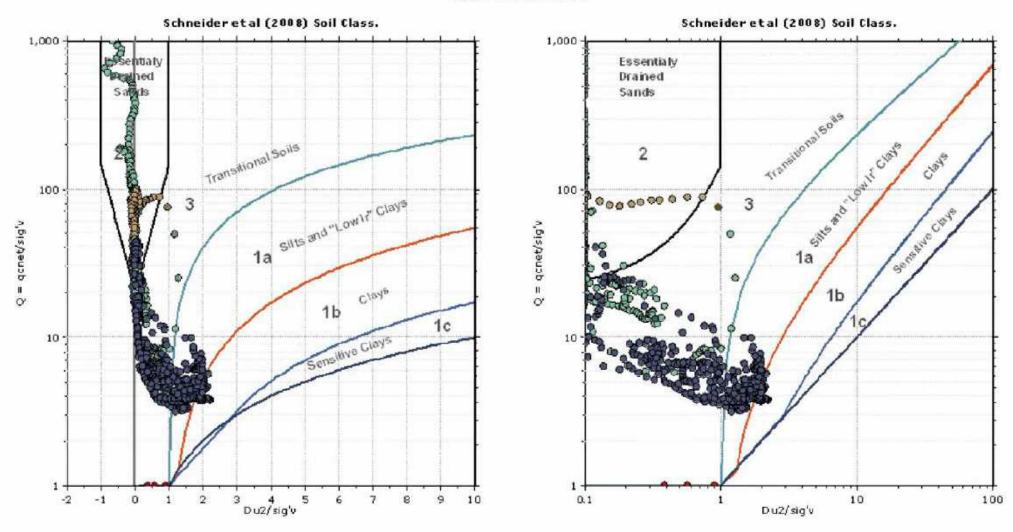
Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

SBT - Bq plots (normalized)

CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°


Cone Type: 180911

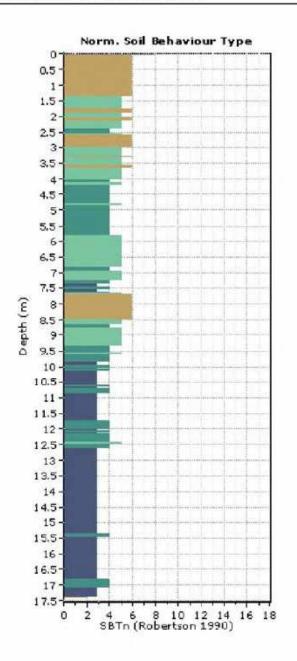
Cone Operator: Hagstrom Drilling

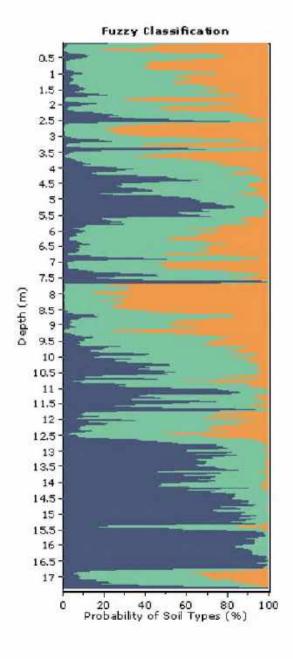
Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

Bq plots (Schneider)

CPT: KP CPT08


Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°


Cone Type: 180911

Cone Operator: Hagstrom Drilling

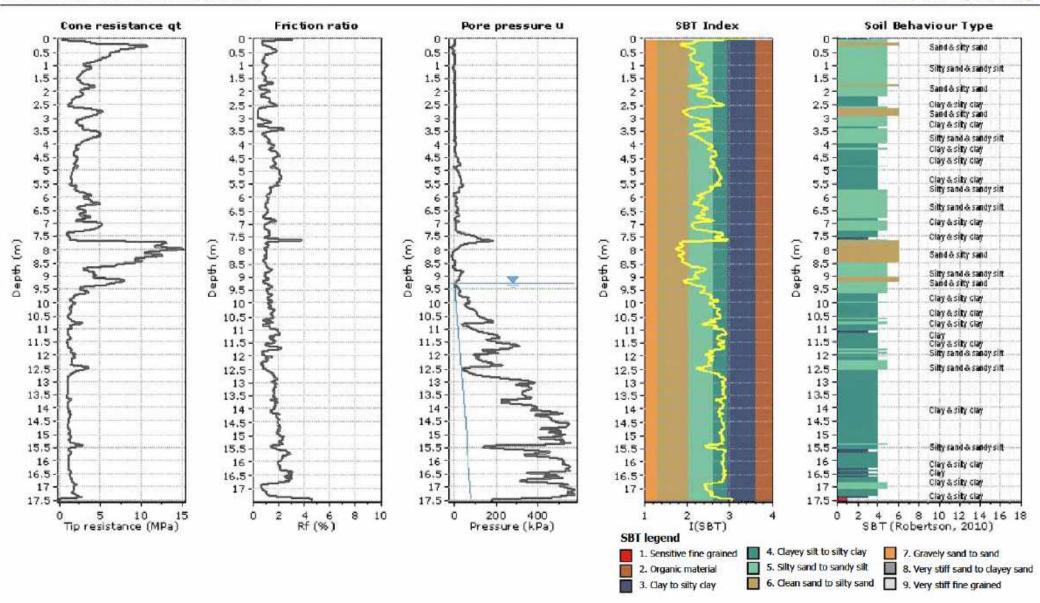
Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

Knight Piésold Level 1,

Knight Piésold Consulting

Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

CPT: KP CPT08

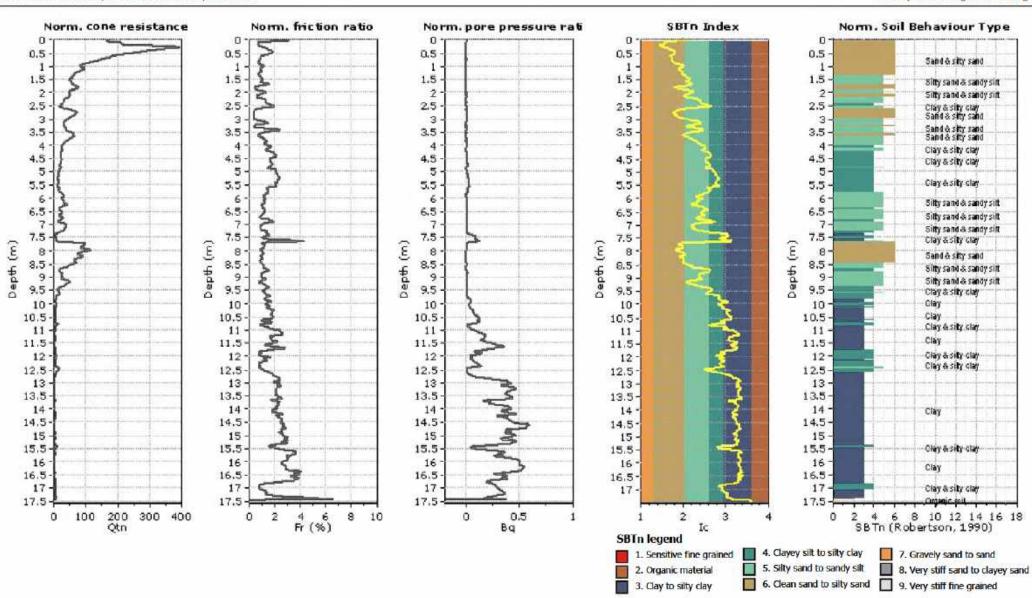
Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

Cone Type: 180911

Knight Piésold Level 1,

Knight Piésold Consulting

Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

CPT: KP CPT08

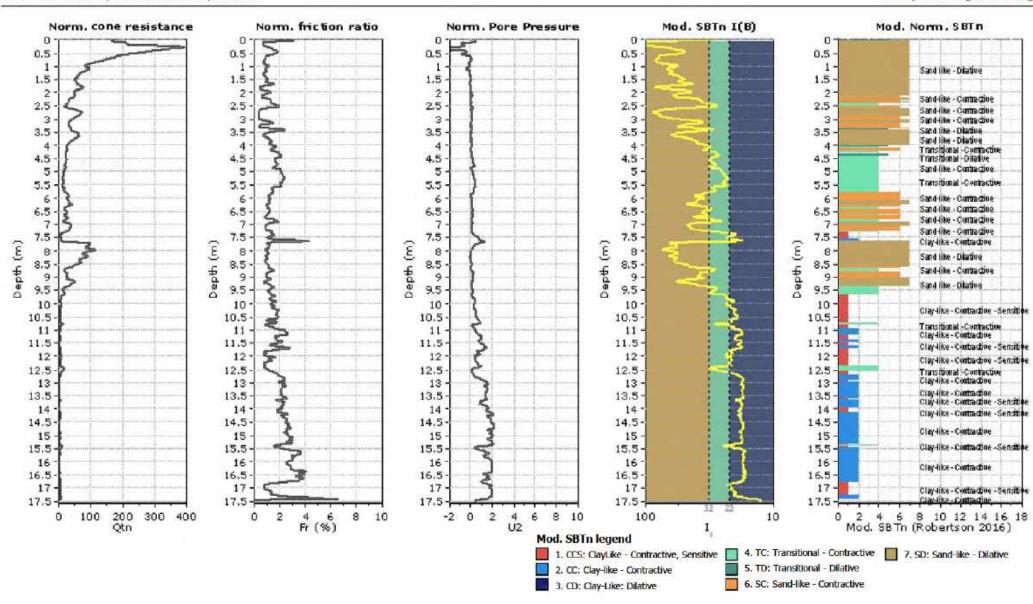
Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

Cone Type: 180911

Knight Piésold Level

Knight Piésold Consulting

Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

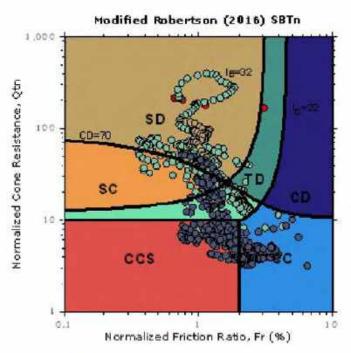
Location: Leinster, Western Australia, Australia

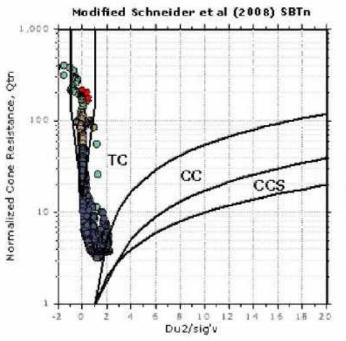
CPT: KP CPT08

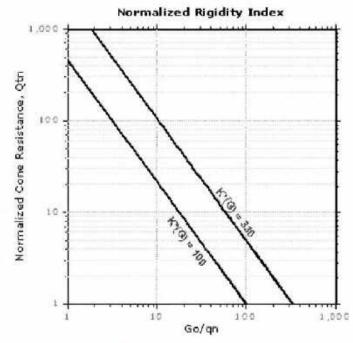
Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

Cone Type: 180911

CPT: KP CPT08


Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°


Cone Type: 180911


Cone Operator: Hagstrom Drilling

Project: Thunderbox Gold Mine
Location: Leinster, Western Australia, Australia

Updated SBTn plots

K(G) > 330: Soils with significant microstructure (e.g. age/cementation)

CCS: Clay-like - Contractive - Sensitive

CC: Clay-like - Contractive

CD: Clay-like - Dilative

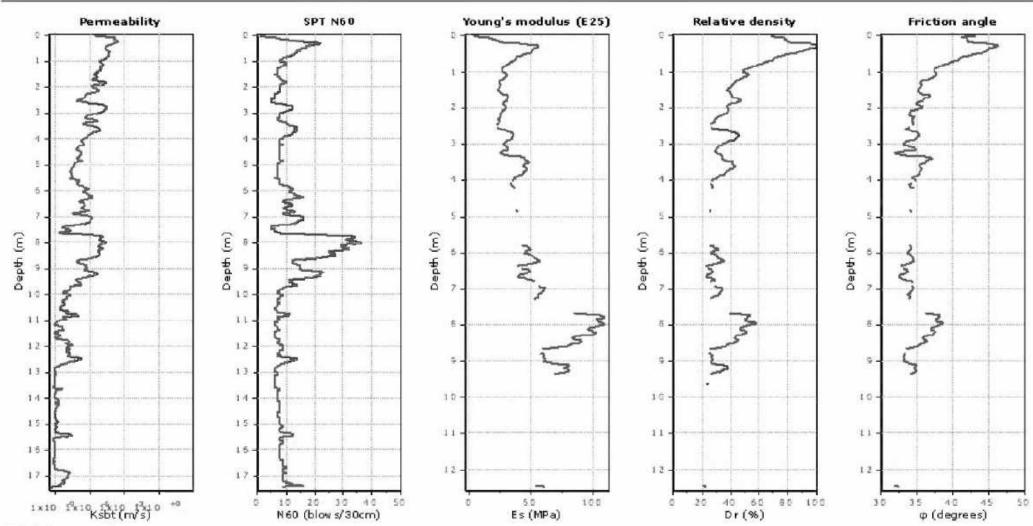
Transitional - Contractive
Transitional - Dilative

SC: Sand-like - Contractive

SD: Sand-like - Dilative

Knight Piésold Consulting Knight Piésold Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

Project: Thunderbox Gold Mine


Location: Leinster, Western Australia, Australia

CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° Ion 6879687.6°

Cone Type: 180911

Cone Operator: Hagstrom Drilling

Calculation parameters

Permeability: Based on SBT, SPT Noo: Based on Ic and Qt

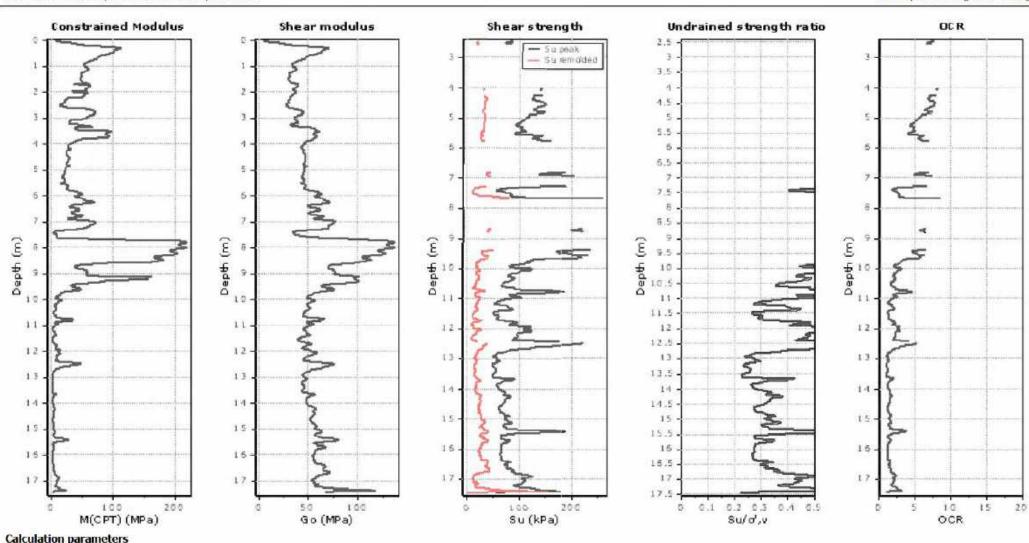
Young's modulus: Based on variable alpha using L (Robertson, 2009)

Relative density constant, Cor.: 350.0 Phi: Based on Kulhawy & Mayne (1990)

User defined estimation data

Knight Piésold Consulting Knight Piésold Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

Project: Thunderbox Gold Mine


Location: Leinster, Western Australia, Australia

CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° Ion 6879687.6°

Cone Type: 180911

Cone Operator: Hagstrom Drilling

OCR factor for clays, Nat: 0.33

— User defined estimation data

Flat Dilatometer Test data

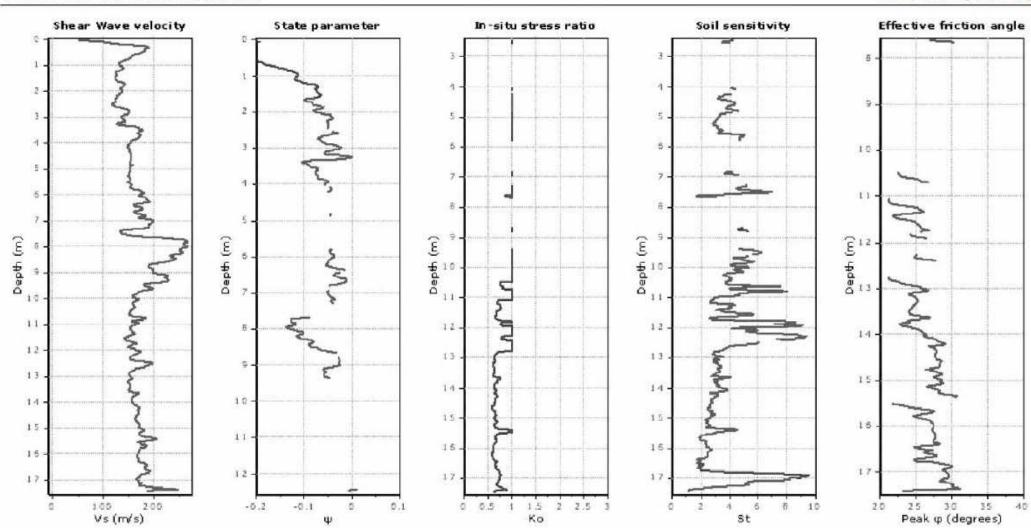
Constrained modulus: Based on variable alpha using I_c and Q_{to} (Robertson, 2009)

Go: Based on variable alpha using I_c (Robertson, 2009)

Undrained shear strength cone factor for days, Na: 14

Knight Piésold Consulting Knight Piésold Level 1, 184 Adelaide Terrace Perth WA 6004, Australia http://www.knightpiesold.com/

Project: Thunderbox Gold Mine


Location: Leinster, Western Australia, Australia

CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° Ion 6879687.6°

Cone Type: 180911

Cone Operator: Hagstrom Drilling

Calculation parameters

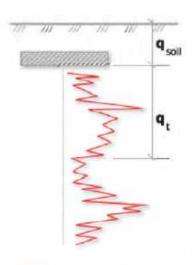
Sol Sensitivity factor, Ns: 7.00

— User defined estimation data

Knight Piésold Consulting

CONSULTING http://www.knightpiesold.com/

Project: Thunderbox Gold Mine

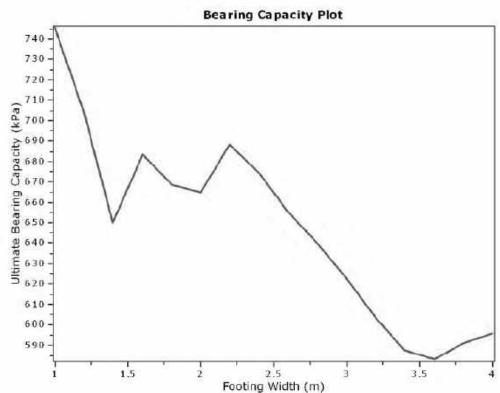

Location: Leinster, Western Australia, Australia

CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

Cone Type: 180911

Cone Operator: Hagstrom Drilling



Bearing Capacity calculation is perfromed based on the formula:

$$Q_{ult} = R_k \times q_t + q_{soil}$$

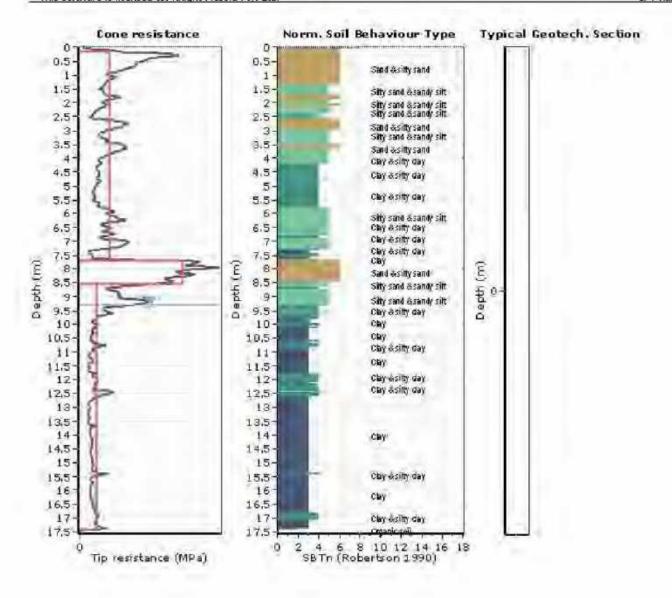
where:

Rk: Bearing capacity factor qt: Average corrected cone resistance over calculation depth q_{sal}: Pressure applied by soil above fooling

Tabula	or results ::	:						
No	(m)	Start Depth (m)	End Depth (m)	Ave. q _t (MPa)	Rk	Soil Press. (kPa)	Ult. bearing cap. (kPa)	
1	1.00	0.50	2.00	3,68	0.20	9.50	745.33	
2	1.20	0.50	2.30	3.47	0.20	9.50	704.03	
3	1.40	0.50	2.60	3.20	0.20	9.50	650.23	
4	1.60	0.50	2.90	3.37	0.20	9.50	683.49	
5	1.80	0.50	3.20	3.30	0.20	9.50	668.79	
б	2.00	0.50	3.50	3.27	0.20	9.50	664.46	
7	2.20	0.50	3.80	3.39	0.20	9.50	688.22	
8	2.40	0.50	4.10	3.33	0.20	9.50	674.64	
9	2.60	0.50	4.40	3.23	0.20	9.50	654.98	
10	2.80	0.50	4.70	3.15	0.20	9.50	639.72	
11	3.00	0.50	5.00	3.06	0.20	9.50	622,45	
12	3.20	0.50	5.30	2.97	0.20	9.50	603.51	
13	3.40	0.50	5.60	2.89	0.20	9.50	587.43	
14	3.60	0.50	5.90	2.87	0.20	9.50	583.06	
15	3.80	0.50	6.20	2.91	0.20	9.50	591.06	
16	4.00	0.50	6.50	2.93	0.20	9.50	595.60	

Knight Piésold Consulting

http://www.knightpiesold.com/


Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

Cone Type: 180911

Tabular results

.:: Layer No: 1 ::.

Code: Layer_1 Start depth: 0.12 (m), End depth: 7.68 (m)

Description: Silty sand & sandy silt

Basic results

Total cone resistance: 3.18 ±1.68 MPa Sleeve friction: 36.44 ±22.09 kPa

Ic: 2,30 ±0,36 SBT_n: 5

SBTn description: Silty sand & sandy silt

Estimation results

Permeability: 1.17E-05 ±3.59E-05 m/s

N₆₀: 9.77 ±3.27 blows Es: 38.03 ±11.27 MPa Dr (%): 41.85 ±17.71 φ (degrees): 35.87 ±3.09 ° Unit weight: 19.00 ±0.00 kN/m³ Constrained Mod.: 45.93 ±23.38 MPa

Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

Go: 47.08 ±12.63 MPa

CPT name: KP CPT08

.:: Layer No: 2 ::.

Code: Layer 2 Start depth: 7.68 (m), End depth: 8.56 (m)

Description: Sand & silty sand

Basic results

Estimation results

Total cone resistance: 11.17 ±1.93 MPa

Sleeve friction: 114.93 ±22.94 kPa

Ic: 2.00 ±0.08 SBTn: 6

5BTn description: Sand & silty sand

Permeability: 8.81E-06 ±4.87E-06 m/s

N₆₀: 29.82 ±3.81 blows Es: 97.94 ±9.09 MPa Dr (%): 48.12 ±4.95 φ (degrees): 37.11 ±0.95 °

Unit weight: 19.00 ±0.00 kN/m3

Constrained Mod.: 194.32 ±22.71 MPa

Go: 122.75 ±11.39 MPa Su: 0.00 ±0.00 kPa

Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

.:: Layer No: 3 ::.

Code: Layer_3

Start depth: 8.56 (m), End depth: 17.42 (m)

Description: Clay

Basic results

Total cone resistance: 1.84 ±1.26 MPa Sleeve friction: 27.08 ±15.55 kPa

Ic: 3.05 ±0.30 SBT_n: 3

SBTn description; Clay

Estimation results

Permeability: 1.03E-07 ±4.41E-07 m/s

N₅₀: 8.98 ±3.27 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 φ (degrees): 0.00 ±0.00 ° Unit weight: 19.00 ±0.00 kN/m3 Constrained Mod.: 15.19 ±25.12 MPa

Go: 58.18 ±13.30 MPa Su: 89.19 ±37.39 kPa Su ratio: 0.43 ±0.22 O.C.R.: 1.99 ±1.03

Knight Piésold Consulting

http://www.knightpiesold.com/

Project: Thunderbox Gold Mine

Location: Leinster, Western Australia, Australia

CPT: KP CPT08

Total depth: 17.48 m, Date: 4/09/2020 Coords: lat 305920.4° lon 6879687.6°

Cone Type: 180911

Cone Operator: Hagstrom Drilling

Summary table of mean values

From depth To depth (m)	Thickness (m)	Perme <mark>abilit</mark> y (m/s)	SPT _{N60} (blows/30am)	E. (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, Go (MPa)	Undrained strength, S _u (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m³)
0.12	7.56	1.17E-05	9.8	38.0	41.8	35.9	45.9	47.1	0.0	0.0	0.0	19.0
7.68		(±3.59E-05)	(±3.3)	(±11.3)	(±17.7)	(±3.1)	(±23.4)	(±12.6)	(±0.0)	(±0.0)	(±0.0)	(±0.0)
7.68	0.88	8.81E-06	29.8	97.9	48.1	37.1	194.3	122.7	0.0	0.0	0.0	19.0
8.56	0.00	(±4.87E-06)	(±3.8)	(±9.1)	(±4.9)	(±0.9)	(±22.7)	(±11.4)	(±0.0)	(±0.0)	(±0.0)	(±0.0)
8.56	8.86	1.03E-07	9.0	0.0	0.0	0.0	15.2	58.2	89.2	0.4	2.0	19.0
17.42		(±4.41E-07)	(±3.3)	(±0.0)	(±0.0)	(±0.0)	(±25.1)	(±13.3)	(±37.4)	(±0.2)	(±1.0)	(±0.0)

Depth values presented in this table are measured from free ground surface

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_w \cdot \left(0.27 \cdot log(R_f) + 0.36 \cdot log(\frac{q_t}{p_a}) + 1.236\right)$$
where $g_w = water unit weight$

:: Permeability, k (m/s) ::

$$I_c < 3.27$$
 and $I_c > 1.00$ then $k = 10^{0.952 - 3.04 \cdot I_c}$
 $I_c \le 4.00$ and $I_c > 3.27$ then $k = 10^{-4.52 - 1.37 \cdot I_c}$

:: N_{SPT} (blows per 30 cm) ::

$$N_{60} = \left(\frac{q_c}{P_a}\right) \cdot \frac{1}{10^{1.1268 - 0.2817 \, I_c}}$$

$$N_{i(60)} = Q_{\rm tri} \cdot \frac{1}{10^{1.1268-0.2817 \cdot I_c}}$$

:: Young's Modulus, Es (MPa) ::

$$(q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68}$$

(applicable only to $I_c < I_{c \text{ cutoff}}$)

:: Relative Density, Dr (%) ::

$$100 \cdot \sqrt{\frac{Q_{tn}}{k_{DR}}}$$
 (applicable only to SBT_n: 5, 6, 7 and 8 or $I_c < I_{c,cutoff}$)

:: State Parameter, ψ ::

$$\psi = 0.56 - 0.33 \cdot \log(Q_{tn,rs})$$

:: Drained Friction Angle, φ (°) ::

(applicable only to SBT_n: 5, 6, 7 and 8 or $I_c < I_{c_cutoff}$)

:: 1-D constrained modulus, M (MPa) ::

If
$$I_c > 2.20$$

 $a = 14$ for $Q_{tn} > 14$
 $a = Q_{tn}$ for $Q_{tn} \le 14$
 $M_{CPT} = a'(q_t - \sigma_v)$
If $I_c \ge 2.20$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_s = \left(\frac{G_0}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

$$\begin{split} N_{kt} &= 10.50 + 7 \; log(F_{\Gamma}) \; \text{or user defined} \\ S_u &= \frac{(q_t - \sigma_v)}{N_{kt}} \\ \text{(applicable only to SBT}_n: 1, 2, 3, 4 and 9 or I_c > I_{c,cutoff}) \end{split}$$

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9 or $L > L_{outset}$)

:: Overconsolidation Ratio, OCR ::

$$\begin{aligned} k_{\text{ocr}} = & \left[\frac{Q_{\text{tn}}^{0.20}}{0.25 \cdot (10.50 \cdot + 7 \cdot log(\textbf{F}_{\text{r}}))} \right]^{1.25} \text{ or user defined} \\ \text{OCR} = & k_{\text{ocr}} \cdot Q_{\text{tn}} \end{aligned}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or I_c > I_{c cutoff})

:: In situ Stress Ratio, Ko ::

$$K_{o}=(1-\sin\phi')$$
- OCR $^{sin\phi'}$
(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_{c}>I_{c\ cutoff}$)

:: Soil Sensitivity, Se ::

$$S_t = \frac{N_S}{F_r}$$
(applicable only to SBT_n: 1, 2, 3, 4 and 9 or I_c > I_{c cutoff})

:: Peak Friction Angle, φ' (°) ::

$$\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \log Q_t)$$

(applicable for $0.10 < B_q < 1.00$)

References

- Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5th Edition, November 2012
- Robertson, P.K., Interpretation of Cone Penetration Tests a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)

APPENDIX B CPT Photos

Plate 1: KP CPT01 - Setup

Plate 2: KP CPT01 - South View

Plate 3: KP CPT02 - East View

Plate 4: KP CPT02 - Setup

Plate 5: KP CPT02 - West View

Plate 6: KP CPT02 - South View

Plate 7: KP CPT03 - Setup and South View

Plate 8: KP CPT04 - Setup and South View

Plate 9: KP CPT04 - Setup and South-West View

Plate 10: KP CPT08 - Setup

Plate 11: KP CPT08 - North

Plate 12: KP CPT08 - South

APPENDIX C

TSF Expansion Site Investigation - 2021

MEMORANDUM

To: Northern Star Resources Limited Date: 20 July 2021

Our Ref: PE21-00909

KP File Ref.: PE801-00296/26-A jl M21004

From:

RE: THUNDERBOX PROJECT - TSF CELL C AND CELL D SITE INVESTIGATION

Knight Piésold Pty Limited (KP) was requested by Northern Star Resources Limited (Northern Star) to undertake a geotechnical site investigation of the proposed TSF Cells C and Cell D at the Thunderbox Gold Mine site. The investigation was conducted in addition to the TSF Cell C investigation conducted by KP in 2020 (Ref. 1).

The site investigation was undertaken from the 12th to 23rd of March 2021. This memorandum presents the factual information obtained from the geotechnical investigation and the interpretation of the ground conditions at the proposed TSF Cells C and D locations. It is noted that these interpretations have already been incorporated into the design documentation, this memo is for record purposes.

1. SITE CHARACTERISTICS

1.1 INTRODUCTION

The Thunderbox Gold Mine is located 45 km south of the town of Leinster in Western Australia and immediately adjacent to the sealed Goldfields Highway.

1.2 TOPOGRAPHY AND SETTING

The proposed TSF Cell C is located to the south of the existing TSF cells and immediately east of the Eastern Waste Dump. The proposed TSF Cell D is in the east of the existing TSF Cells A and B.

The area around both TSF Cells C and D is generally flat, with natural slopes at approximately 1%. Moderately dried out vegetation is present throughout the investigation area. In some areas, the vegetation is slightly thicker than other areas, however towards the centre of the proposed Cells C and D, vegetation becomes scarce.

1.3 CLIMATE

The region is in a semi-arid environment and has a dry climate with hot summers and cool winters. The average annual rainfall is about 224 mm. February and March tend to be the wettest months, September and October are the driest months (Ref. 2). Average monthly pan evaporation values for the site are in the range of 91 mm to 404 mm per month with an annual evaporation of 2,866 mm.

1.4 GEOLOGY

SKM carried out a site material characterization in 2014 and summarized the regional and mine site geology (Ref. 3). The mine site geology is extracted below:

Thunderbox lies within the Yilgarn Shield of Western Australia, which consists primarily of granite and granite-gneiss rocks cut out by narrow north-west trending belts of Archaean age meta-sedimentary and meta-volcanic rocks, generally referred to as 'greenstone belts'. They contain a mixture of metamorphosed mafic to ultra-mafic volcanic rocks (including basalt, amphibolite, dolerite and gabbro), felsic volcanic rocks, and metasedimentary rocks (including cherts and banded iron formations). The greenstone sequence has been deeply weathered and lateritised with lateritic profiles being preserved over most of the ultramafic sequence (Lindbeck 2001).

The 1:250,000 geological map of Leonora (Ref. 4) indicates that the site is founded on igneous rock which is overlain by colluvial (Cza) and possibly alluvial (Qa) deposits:

- Qa: alluvial clay, silt, sand and gravel. The site is located at the uppermost reach of the drainage line and alluvial material is expected to be limited or absent.
- Cza: colluvial clay, silt and sand (pebbly in places).

Figures 1.1 and 1.2 present the geological map and map key.

1.5 HYDROGEOLOGY

The water levels monitored in 6 holes at the TSF site were relatively stable from 2002 to 2013. The water levels were in the range between approximately 21 m to 29 m below ground surface (Ref. 5).

2. SITE INVESTIGATION

2.6 INTRODUCTION

A geotechnical investigation was conducted for proposed TSF Cell C by KP in 2020 (Ref. 1). However, due to an increase in throughput, a subsequent geotechnical site investigation was undertaken to determine the foundation conditions across the proposed TSF Cells C and D to provide design parameters for foundation and earthworks design. The scope of work comprised borehole drilling and test pitting at the proposed TSF Cells C and D.

The work was carried out during March 2021 and comprised:

- Drilling three boreholes within the proposed TSF Cells C and D area using diamond coring techniques to depths of 24.1m, 27.3 m and 9m.
- Standard Penetration Tests (SPT) at selected intervals in the foundation soils.
- Test pitting at fifty-one locations within the proposed TSF Cells C and D area.
- Collection of undisturbed samples of soils for laboratory testing.

Fieldwork was supervised by a Geotechnical Engineer from KP Perth. The test locations were pre-determined and set out on site by a Northern Star surveyor and verified by the Geotechnical Engineer, prior to fieldwork.

The site investigation was undertaken in accordance with Australian Standard AS1726–2017 (Ref. 6).

Figure 2.1 shows the site investigation plan including the approximate footprint of the proposed TSF Cells C and D.

The coordinates used are to UTM WGS84 Zone 51J (north) grid whereas Thunderbox uses a site grid. As the horizontal difference between the two grid systems is less than 1 m, the test pits were set out using a hand-held GPS to approximately +/- 5 m accuracy, and no grid conversion was made.

2.7 BOREHOLE DRILLING

Three boreholes were drilled to depths between 9 m and 27.3 m using the HQ size triple-tube diamond coring technique. The drilling rig was supplied and operated by Edge Drilling. The borehole locations are shown in Figure 2.1.

The cores were placed into core trays, logged and photographed by the KP site representative. All cores were subsequently transported to the Thunderbox store for temporary storage prior to shipment of samples to the laboratory.

Two falling head permeability tests were conducted in each borehole, after the boreholes had been thoroughly cleaned of drill muds.

Standard Penetration Tests (SPTs) were undertaken in the boreholes, to assess the strength characteristics and nature of the in-situ material. The SPTs were conducted within the upper layer and due to the presence of rock throughout the remainder of the boreholes, no other SPTs were attempted due to the significant risk of damage to equipment. The SPT results are plotted in Figure 2.2.

A summary of the drilling work is presented in Table 2.1.

Logs and photographs of the boreholes are presented in appendices A and B respectively.

Borehole ID	Date Completed	Total Depth (m)	Falling Head Permeability Test Depths (m)
C-BH05	19-Mar-21	24.1	0.5, 23.8
C-BH06	21-Mar-21	27.3	0.5, 27.0
C-BH07	22-Mar-21	9.0	0.5, 4.7

Table 2.1: Summary of Borehole Drilling

2.8 TEST PITTING

Fifty-one test pits were excavated to depths between 0.3 m and 1.5 m using a CAT 336D fitted with a 600 mm toothed bucket supplied and operated by Northern Star.

All test pits were conducted in the original planned locations, as surveyed prior to arrival, with the exception of D-TP-05 which was proposed to be at the centre point of the access road, and D-TP-35 and D-TP-36 which were located at the base of the TSF drain. These three test pits were subsequently moved to be approximately 10 m east to the edge of the road or drain.

Bulk disturbed samples were taken from twelve test pits and sent for laboratory testing.

A summary of the test pits is presented in Table 2.2. Refusal was encountered at shallow depths in all test pits, indicating the existence of a Ferricrete hardpan across the TSF site.

Logs and photographs of the test pits are presented in appendices C and D respectively. The test pit locations are shown in Figure 2.1.

Table 2.2: Summary of Test Pitting

Test Pit ID	Date Conducted	Refusal Depth (m)
C-TP-35	13-Mar-21	0.8
C-TP-36	13-Mar-21	0.7
C-TP-37	13-Mar-21	0.8
C-TP-38	13-Mar-21	0.6
C-TP-39	13-Mar-21	0.7
C-TP-40	13-Mar-21	0.8
C-TP-41	13-Mar-21	1.0
C-TP-42	13-Mar-21	1.0
C-TP-43	13-Mar-21	0.8
C-TP-44	13-Mar-21	0.6
C-TP-45	13-Mar-21	0.9
C-TP-46	13-Mar-21	0.9
C-TP-47	13-Mar-21	0.5
C-TP-48	13-Mar-21	1.1
C-TP-49	13-Mar-21	1.2
D-TP-01	13-Mar-21	1.5
D-TP-02	13-Mar-21	0.7
D-TP-03	13-Mar-21	0.8
D-TP-04	13-Mar-21	0.7
D-TP-05	14-Mar-21	0.7
D-TP-06	14-Mar-21	1.1
D-TP-07	14-Mar-21	1.1
D-TP-08	14-Mar-21	1.0
D-TP-09	14-Mar-21	0.9
D-TP-10	14-Mar-21	0.6
D-TP-11	14-Mar-21	1.0
D-TP-12	14-Mar-21	1.2
D-TP-13	14-Mar-21	1.2
D-TP-14	14-Mar-21	0.9
D-TP-15	14-Mar-21	0.8
D-TP-16	14-Mar-21	1.3
D-TP-17	14-Mar-21	0.7
D-TP-18	14-Mar-21	0.9
D-TP-19	14-Mar-21	0.9
D-TP-20	14-Mar-21	0.90

Test Pit ID	Date Conducted	Refusal Depth (m)
D-TP-21	14-Mar-21	0.60
D-TP-22	14-Mar-21	0.60
D-TP-23	15-Mar-21	1.30
D-TP-24	15-Mar-21	0.60
D-TP-25	15-Mar-21	0.70
D-TP-26	15-Mar-21	0.90
D-TP-27	15-Mar-21	0.50
D-TP-28	15-Mar-21	0.90
D-TP-29	15-Mar-21	0.80
D-TP-30	15-Mar-21	1.50
D-TP-31	15-Mar-21	0.70
D-TP-32	15-Mar-21	0.80
D-TP-33	15-Mar-21	0.50
D-TP-34	15-Mar-21	0.30
D-TP-35	15-Mar-21	0.50
D-TP-36	15-Mar-21	0.40

2.9 LABORATORY TESTING

The purpose of the laboratory testing was to classify and characterise the insitu materials, to assess their characteristics as founding materials and for embankment construction.

The laboratory testing was undertaken by E-Precision soil lab and comprised:

- Particle size distribution.
- Atterberg limits.
- Linear shrinkage.
- Compaction tests.
- Falling head permeability tests.
- Emerson tests.
- Consolidated Undrained (CU) triaxial tests.
- Uniaxial compressive strength.

The laboratory test reports are presented in Appendix E and the test results are summarised in Table 2.3.

Table 2.3: Summary of Laboratory Testing Results

Sample	Location	Depth (m)	Description	USCS symbol	A-line		article si tribution		Atterb	erg L <mark>i</mark> mi	its (%)	Linear Shrinkage (%)	Falling head permeability	Emerson Class		action sts	Tri	axial
						Gravel	Sand	Fines	Liquid	Plastic Limit	Plasticity Index	(70)	(m/s) 98% SMDD		MDD (t/m³)	OMC (%)	c' (kPa)	φ' (deg)
-	C-TP-35	0.3-0.4	SAND	SP	CL or OL	10	60	30	34	18	16	4.79	8.8 x 10 ⁻⁷	8	1.65	19.5	<u>e</u> :	8
	C-TP-39	0.4-0.5	SAND	SP	CL-ML	19	55	26	28	22	6	2.26	1.2 x 10 ⁻⁶		1.99	13.0	<u> </u>	į.
	C-TP-40	0.2-0.3	Sandy CLAY	SC	CL or OL	12	43	45	26	15	11	5.76	2.7 x 10 ⁻⁷	5	2.00	11.0	5	5
	C-TP-42	0.5-0.6	Sandy CLAY	SC	CL or OL	9	55	36	26	11	15	3.34	7	(3)	(5)	1.7/		-
	C-TP-46	0.4-0.5	Sandy CLAY	SC	CL or OL	6	53	41	24	16	8	4.27	€.	5	151	S=8:	51	
	D-TP-02	0.7-0.8	Sandy CLAY	SC	CL or OL	6	38	56	28	22	6	5.15		67.	3.55	10.75		-
	D-TP-06	0.2-0.3	Sandy CLAY	SC	CL or OL	11	51	38	23	12	11	3.30		3.50	828		-	- 5
	D-TP-09	0.4-0.5	Sandy CLAY	SC	CL or OL	20	37	43	30	18	12	6.81	3.4 x 10 ⁻⁷	125	1.91	13.0	-:	5
SERVICE CONTRACTOR	D-TP-10	0.2-0.3	SAND	SP	CL-ML	22	50	28	19	13	6	3.25	9.4 x 10 ⁻⁷	8	2.25	7.0	#	
Disturbed Sample	D-TP-15	0.4-0.5	Sandy CLAY	SC	CL or OL	6	41	53	24	15	9	2.56	-		-		-	-
Sample	D-TP-17	0.4-0.5	Sandy CLAY	SC	CL or OL	22	40	38	23	15	8	3.61	ı):#:	000	-	-
	D-TP-19	0.2-0.3	Sandy CLAY	SC	CL or OL	9	53	38	17	10	7	3.47	1.3 x 10 ⁻⁷	-	2.08	10.5	-	-
	D-TP-21	0.3-0.4	Sandy CLAY	SC	CL or OL	13	43	44	28	14	14	6.15	9.9 x 10 ⁻⁸		1.99	12.0	-	-
	D-TP-24	0.2-0.3	Sandy CLAY	SC	CL or OL	5	49	46	21	11	10	6.82	2	-	-	-		-
	D-TP-26	0.5-0.6	Clayey Gravelly SAND	SP	CL or OL	34	41	25	25	15	10	2.91	1.7 x 10 ⁻⁶	5	2.20	9.5	-	ş
	D-TP-27	0.2-0.3	Sandy CLAY	SC	CL or OL	18	39	43	22	15	7	3.96	9.7 x 10 ⁻⁸	5	1.92	13.5	<u>-</u>	-2
	D-TP-29	0.3-0.4	SAND	SP	CL or OL	28	46	26	23	14	9	2.95	S		100	123	≦:	E E
	D-TP-31	0.3-0.4	Sandy CLAY	SC	CL-ML	8	44	48	20	15	5	5.72	<u>©</u>	1046	135	T#	2	-
	D-TP-34	0.1-0.2	SAND	SP	CL or OL	28	44	28	21	15	6	5.90	1.3 x 10 ⁻⁶	120	2.11	10.5	23	8
	Eastern Waste Dump A	N/A	GRAVEL	GP	CL-ML	74	19	7	25	19	6	4.95	\$ 0		•	•	£	9
	Eastern Waste Dump B	N/A	GRAVEL	GP	CL or OL	83	12	5	26	20	6	4.11				•		ā
	SWD-A-20201219	N/A	語語は		UEC	272	17		10.70	958	l In		ē		[151	1.70	T: .	
	SWD-B-20201219	N/A			V.51	188	-	l e	100)(=))	. 45		5	II THE	(50)	(E)	7 4	
	C-BH-05	3.0-3.45	Silty Sandy GRAVEL	GP	ML or OL	44	40	16	37	28	9	4.27	48		-		8	
	C-BH-05	21.1-21.35	SILT	ML	ML or OL	0	6	94	45	31	14	7.14	in .		484		₹.	-
SPT	C-BH-06	4.5-4.95	SILT	ML	ML or OL	3	10	87	47	36	11	4.56	ж	V#5	2 - 2	878	*:	ā
	C-BH-07	3.0-3.45	Sandy SILT	SM	MH or OH	9	48	43	53	37	16	5.17	æ		<u>0</u> ₩3	280	# ,	-
	C-BH-07	4.5-4.9	Sandy SILT	SM	ML or OL	0	35	65	46	37	9	4.84	H		-	-	-	-
Push	C-BH-05	12.0-12.25				-	-	-	-		-	-	1	-			23.9	25.6
Tube	C-BH-06	7.5-7.6	(#S)	-	-		-	-	-	(4)		-	*		~	-	90.1	22.7

Abbreviations:

MDD - maximum dry density

OMC – optimum moisture content

c' - effective cohesion

Φ' – effective stress friction angle

UCS - uniaxial compressive strength

3. INVESTIGATION FINDINGS

3.10 SUB-SURFACE CONDITIONS

Based on the 2020 and 2021 investigations the typical sub-surface profile underlying the proposed TSF Cell C and Cell D footprint is summarised in Table 3.1.

Table 3.1: Typical Subsurface Profile

Material Layer	Bottom Level of Horizon (m)	Material Description	SPT
Topsoil/Colluvium	~1.0	Clayey sand with gravels and roots, loose to medium dense	N/A
Ferricrete (hardpan)	~4.5	Very low to low strength, recovered as Gravel laterite, strongly cemented	36-44 Average 40
Residual Soil, XW BIF/Metasedimentary Rock, recovered as Sandy Silt/Sandy Clay	~16.5	Very low strength, extremely weathered, recovered as Gravelly clay/silt with layers of Ferricrete and Cherts	34 to 100 Average 47
BIF	Below ~16.5	Distinctly weathered	발

3.11 GROUNDWATER

Groundwater was not encountered to the maximum investigation depth of 27.4 m. This is consistent with the historical monitoring data.

3.12 PERMEABILITY

Six falling head permeability tests were conducted in the boreholes at different depths. The tests conducted are summarized in Table 3.2.

The permeability calculations were based on the method by Hvorslev 1951 (Ref. 7).

Table 3.2: Summary of in-situ permeability tests

Borehole	Stratigraphy	Test Depth (m)	Permeability (m/s)
C-BH05	Sandy Silt	0.5	2.4 x 10 ⁻⁶
C-BH05	XW BIF	23.8	5.1 x 10 ⁻⁵
C-BH06	Sandy Silt	0.5	7.0 x 10 ⁻⁵
C-BH06	XW BIF	27.0	2.4 x 10 ⁻⁶
C-BH07	Sandy Silt	0.5	5.9 x 10 ⁻⁷
C-BH07	XW BIF	4.7	4.1 x 10 ⁻⁶

The insitu test results appear to be reasonable.

3.13 EMERSON CLASS

The Emerson tests indicate that the top layer materials have either a class of 5 or 8, confirming that these materials are not dispersive.

3.14 GEOTECHNICAL PARAMETERS

Table 3.3 provides the interpreted soil shear strength and permeability parameters based on the field investigation and laboratory test results.

Table 3.3: Interpreted Typical Geotechnical Parameters for TSF Design

Material	Ymoist	Drai Stre	ned ngth	Undrair	ned Strength	Permeability		
	(kN/m³)	c' (kPa)	Φ' (deg)	s _u /σ _v '	Minimum s _u (kPa)	(m/s)		
Tailings	16	0	32	0.25	0	8.0 x 10 ⁻⁰⁸		
Zone A	19	5	25-28	8 # 8	(*)	1.0 x 10 ⁻⁰⁸		
Zone C	19	5	26-30	121	(12)	5.0 x 10 ⁻⁰⁶		
Sandy clay (Top Soil)	19	5	28	170	:5:	1.0 x 10 ⁻⁰⁷		
Laterite (Ferricrete)	21	5	30		127	5.0 x 10 ⁻⁰⁷		
Sandy Silt/Sandy Clay (Residual Soil, XW BIF)	esidual Soil, 20		25	0.3	80	1.0 x 10 ⁻⁰⁸		
BIF	23	100	35	-	451	6.0 x 10 ⁻⁰⁸		

The bulk densities are typical values for these types of materials.

Friction angles are based on triaxial test results or typical values for similar materials.

The cohesion values reflect the degree of over-consolidation and cementation within the in-situ materials.

The permeability coefficients are based on insitu and lab test results and typical values for similar materials.

The materials at shallow depths are heavily over-consolidated due to cementation (Ferricrete hardpan), these materials are dilative, the undrained shear strengths will be higher than the drained shear strengths, and will be capped at drained strength according to ANCOLD (2019).

The drained and undrained strengths for Banded Iron Formation are the same.

These suggested parameters are typical values based on the limited test data, the parameters shall be adjusted for stability analysis of a specific section based on insitu and lab tests on materials from the nearest boreholes or test pits.

3.15 CONSTRUCTION CONSIDERATIONS

3.15.1 Workability of Near Surface Materials

Strongly cemented laterite (Ferricrete) is typically present at very shallow depth in the area of investigation. The majority of test pits undertaken typically refused at a depth of less than 1 m.

Conventional earthmoving equipment, such as large dozers and excavators should be capable of excavating the near surface materials across the site. However, excavation difficulties may be encountered where Ferricrete hardpan exists at shallow depth.

It is expected that the Ferricrete hardpan materials should be excavatable using a D9 dozer or equivalent equipped with a single-tyne ripper attachment.

3.15.2 Insitu Soil as Soil Liner

It is expected that a soil liner will be required at the proposed TSF Cell C and Cell D basin. The hydraulic conductivity of the top sandy soils is estimated to be in the order of 2.0×10^{-6} m/s to 1.0×10^{-7} m/s (compacted to 98% SMDD) based on test results.

3.15.3 Embankment Construction Materials

The 2020 geotechnical investigation indicated the following:

- Selected mine waste samples are classified as Clayey GRAVEL with trace Sand.
- Selected mine waste samples have a percentage fines (i.e. < 0.075 mm) in the order of 27%.

Additional samples should be selected for laboratory testing to confirm if suitable Zone A materials can be sourced from the stockpiles with selective excavation.

Zone C materials can be Run of Mine or mine waste which should be readily available from the mine operation.

3.15.4 Cut-Off Trench

Due to the existence of Ferricrete hardpan at shallow depth, the cut-off trench will be likely very shallow, less than 1 m, typically 0.5 m to 1 m depending on the location.

3.15.5 Impact of Groundwater

The ground water level is approximately 30 m below the existing ground surface, it will unlikely have any impact on the TSF design and construction.

3.15.6 Existing boreholes

It was observed that the boreholes completed during the 2020 site investigation, were yet to be grouted. The result of leaving the boreholes open during the construction phase may result in seepage into underlying ground formations. It is important that Northern Star grout these holes and inspect the conditions of all the boreholes after grouting.

3.15.7 Soil Dispersion

The Emersion test results indicate that the upper layer materials are not dispersive.

4. CONCLUSIONS AND RECOMMENDATIONS

Based on the site geotechnical investigation and laboratory testing, the following conclusions and recommendations can be made:

- The areas investigated are partly disturbed and relatively flat. The site is considered as suitable for the proposed TSF expansion.
- Conventional earthmoving equipment, such as large dozers and excavators should be capable of excavating the near surface materials across the site. However, excavation difficulties will likely be encountered where Ferricrete hardpan exists at shallow depth. It is expected that the Ferricrete hardpan materials should be excavatable using a D9 dozer or equivalent equipped with a single-tyne ripper attachment.
- Typical subsurface profile and design parameters are provided in this memorandum. These include permeability parameters and shear strengths under different loading conditions.
- The materials at shallow depths are heavily over-consolidated due to cementation (Ferricrete hardpan), these materials are dilative, the undrained shear strengths will be higher than the drained shear strengths, and will be capped at drained strength according to ANCOLD (2019).
- Due to the existence of Ferricrete hardpan at shallow depth, the cut-off trench will be likely shallow, typically about 1.0 m, which will vary with locations and need to be confirmed on site by an experienced geotechnical engineer.
- The ground water level is approximately 30 m below the existing ground surface, it will unlikely have any impact on the TSF design and construction.
- The existing boreholes must be grouted to reduce seepage into the ground.
- The permeability coefficients of top layer materials based on lab tests are in the range of 2.0 x 10⁻⁶ m/s to 1.0 x 10⁻⁷ m/s.
- . The Emersion tests indicate that the upper layer materials are not dispersive.

We trust the information provided is sufficient at this stage and will be pleased to provide any additional advice as required.

Yours faithfully

KNIGHT PIÉSOLD PTY LTD

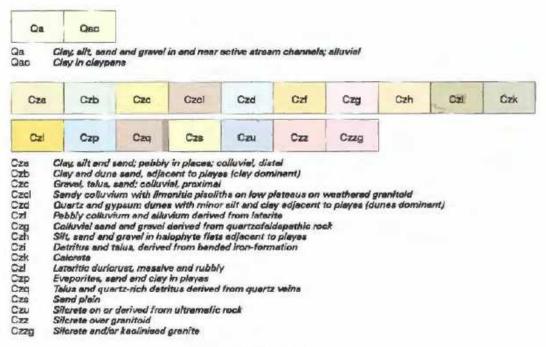
JIM LUO

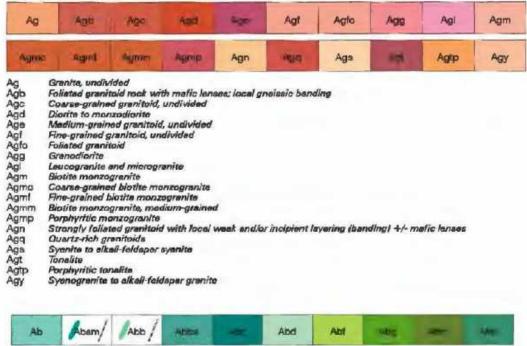
Manager Geotechnical Services

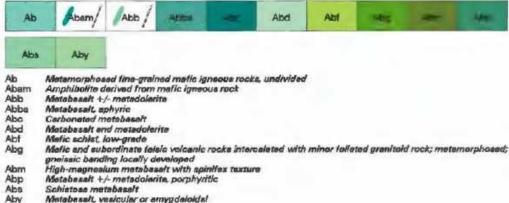
DAVID MORGAN

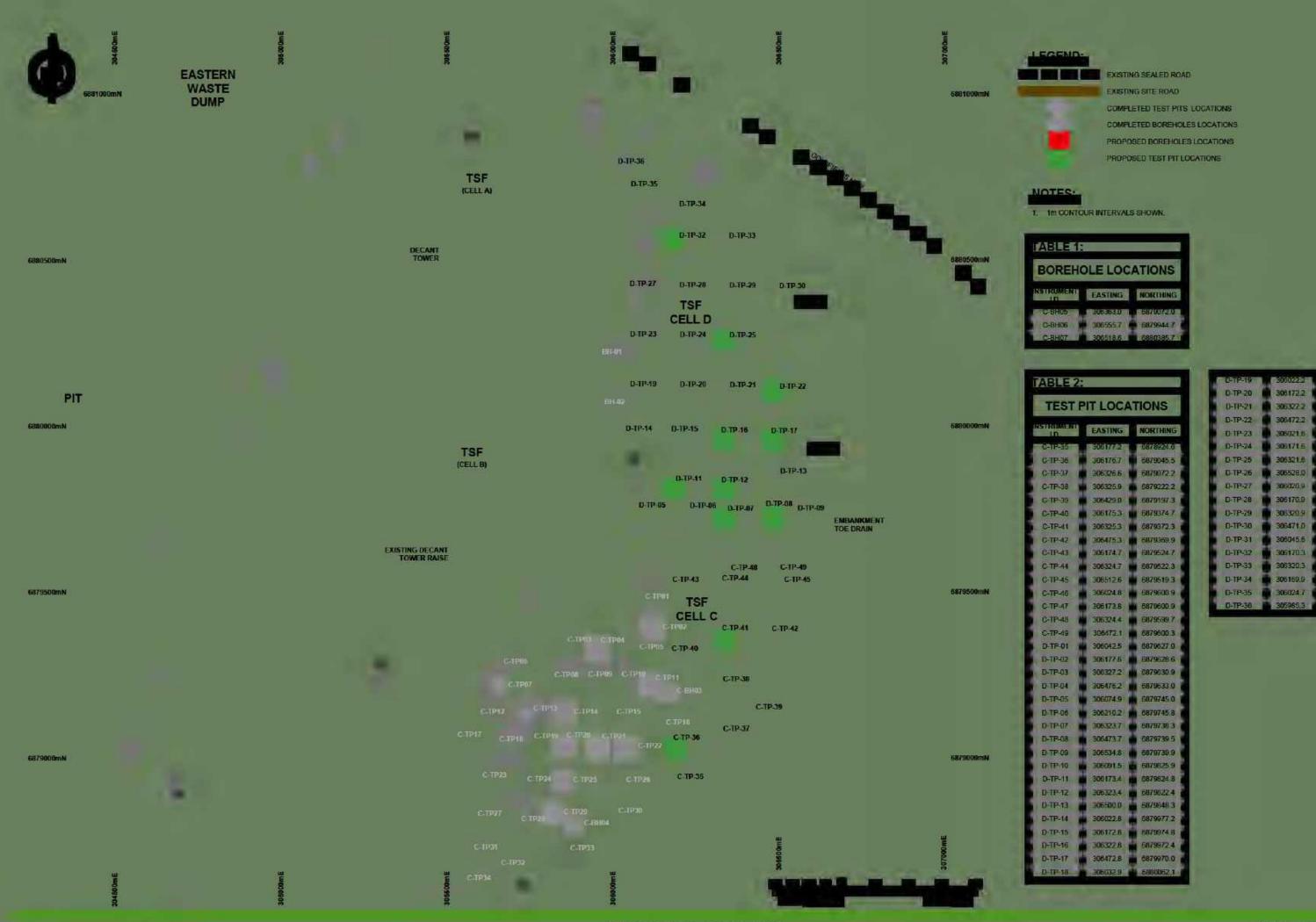
Managing Director

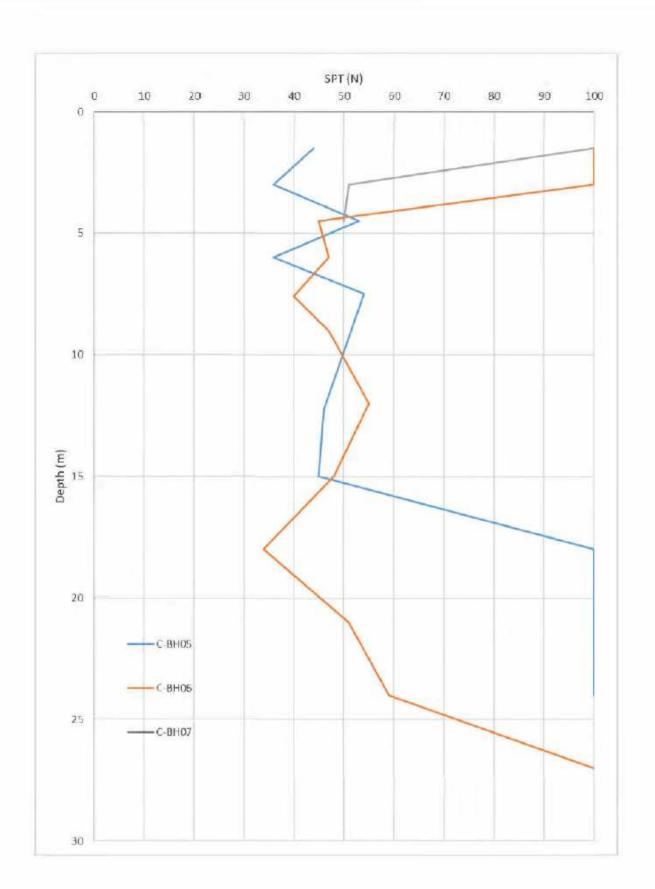
REFERENCES


- Knight Piésold, Memo PE20-01642, "Thunderbox Project, TSF Cell C Geotechnical Investigation", Rev 0, December 2020
- Knight Piésold, Report PE801-00296/07, "Thunderbox Project, Tailings Storage Facility, Expansion Permitting Design", Rev 0, November 2017
- SKM, Preliminary Site Materials Characterisation Final Report Wildara Group Ref. No WV04806-NEM-RP-002 Dated 13 May 2014.
- Stewart, A.J., 2001, "Leonora Second Edition, 1:250,000 Scale Geological Map", AGSO, Geoscience Australia, Canberra, Catalogue No. 36953.
- Coffey, Thunderbox Gold Project Raise of TSF –Design Report, 23 September 2014
- Australian Standards, "Geotechnical Site Investigations AS 1726 2017".
- Hvorslev, M.J., 1951, "Time lag and Soil Permeability in ground-water observations"




Extract of: Stewart, A.J., 2001, "Leonora Second Edition, 1:250,000 scale geological map", AGSO, Geoscience Australia, Canberra, Catalogue No. 36953.


Cainozoic



Archaean

5880727.4

APPENDIX A Borehole Logs

Contr	actor		Edge Drilling		Drillhol	e No)	C-BH05				Page		1 of 3
Locat	ion		Proposed TSF Cell C Area		Drill Type			Hanjin D&E	8D			Date Star	ted	18/Mar/2021
Coord	linates/	System	306363E, 6879072N / WGS84 UTM Zone 51 J		Total Dept	h		24.1 m				Date Con	npleted	19/Mar/2021
Hole 5	Size		HQ3		Elevation			0 m				Logged B	Ву	JY
Core	Size		5		Azimuth, I	nclin	ation	, 0°				Reviewed	i By	
			1			1 1			10-1	-			22.55	
DEPTH - (M)	ELEVATION - (M)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLENO	SAMPLE REC. (%)	SAMPLE TYPE	BLOW COUNTS FIELD (PER 6") (MPa)	SPT N' VALUE UGS	SPT	'N' VA	CMASS TERS	n d	NOTES
1	-1- -1- 		SAND (0 to 13 m) SAND (SP), fine to medium grained, red brown and orange brown, sub-rounded to sub-angular, dry to slightly moist, with low plasticity clay, trace fine to medium grained gravel. COLLUVIUM. Quartz and Basalt gravel found on surface. FERRICRETE (1.3 to 4.5 m) FERRICRETE, red brown, very low strength, extremely weathered	75 100	SPT 1	100	SPT	5/19/25	44		x			
3-	-3- - -			100	SPT 2	100	SPT	10/16/20	36		x	4		
4-	-4-			100			.)							
5-	-5		BANDED IRON FORMATION (4.5 to 5 m) BIF/Metasedimentary Rock, grey, very low strength, extremely weathered, recovered as low plasticity silt	100	SPT 3	100	SPT	16/24/29	53		x			
6-	-6-		BANDED IRON FORMATION (5 to 6.45 m) BIF/Metasedimentary Rock, grey and red brown, very low strength, extremely weathered, recovered as low plasticity silt	71	SPT 4	100	SPT	8/18/18	36	ſ	x			
7-	-7-		BANDED IRON FORMATION (6.45 to 7.5 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity sandy silt	100										
8-	-8- -8-		BANDED IRON FORMATION (7.5 to 9.2 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity sandy silt	90	SPT 5	100	SPT	12/38/16	54		ж			
9-	-9	EMAR	BANDED IRON FORMATION (9.2 to 10 m) BIF/Metasedimentary Rock, grey, very low strength, extremely weathered, recovered as low plasticity silt KS:	100										ren
22.35	10		[16] 및 16 12(14) (20) 16 2(14)				SAL	RACENI	MINE	KAL	HU	LUINGS	LIMI	I E D

- 1. Borehole located to the south east of the existing TSFs
- 2. Samples

- taken as indicated 3. SPT testing undertaken as indicated

THUNDERBOX

P/A NO. PE801-00296/24	REF. NO.	REV
FIG	IRE	

Drillhole No Contractor Edge Drilling C-BH05 Page 2 of 3 Location Proposed TSF Cell C Area **Drill Type** Hanjin D&B 8D **Date Started** 18/Mar/2021 306363E, 6879072N / WGS84 UTM Zone 51 J 19/Mar/2021 Coordinates/System **Total Depth Date Completed** 24.1 m Hole Size HQ3 Logged By Elevation 0 m Core Size Azimuth, Inclination Uª Reviewed By UCS FIELD (MPa) KEY ROCK MASS 8 ZESS ZESS **PARAMETERS** 3 RUN RECOVERY 8 COUNTS 90 WALUE - ROD SAMPLE REC. MATERIAL DESCRIPTION BLOW COUN (PER 6") - RMR NOTES ELEVATION DEPTH - (M PHICL SAMPLE ' z SPT 'N' VALUES - x 20 40 60 80 BANDED IRON FORMATION (10 to 10.3 m) 100 BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity sandy silt 11 -11 BANDED IRON FORMATION (10.3 to 11.6 m) 30 BIF/Metasedimentary Rock, grey, very low strength, extremely weathered, recovered as low plasticity silt BANDED IRON FORMATION 12 -12 (11.6 to 13.95 m) Push Tube 1 BIF/Metasedimentary Rock, red brown, very low strength, extremely 100 weathered, fissile, recovered as low plasticity sandy silt SPT 6 SPT 9/16/30 100 46 BANDED IRON FORMATION 13--13-(13.95 to 14.9 m) BIF/Metasedimentary Rock, red brown, 100 very low strength, extremely weathered, recovered as low plasticity silt BANDED IRON FORMATION (14.9 to 15.7 m) -14 14 BIF/Metasedimentary Rock, red brown and grey, very low strength, 20 extremely weathered, recovered as low plasticity sandy silt BANDED IRON FORMATION (15.7 to 16.65 m) 15--15 BIF/Metasedimentary Rock, red brown, SPT 7 100 SPT 16/20/25 45 × very low strength, extremely 100 weathered, recovered as low plasticity silt BANDED IRON FORMATION (16 65 to 16 86 m) 16--16 BIF/Metasedimentary Rock, grey and 50 yellow orange, very low strength, extremely weathered, recovered as low plasticity sandy silt BANDED IRON FORMATION 50 (16.86 to 17 m) -17-17-BIF/Metasedimentary Rock, red brown, very low strength, extremely 80 weathered, recovered as low plasticity sandy silt BANDED IRON FORMATION (17 to 18.25 m) 18--18BIF/Metasedimentary Rock, red brown, SPT 8 (100) SPT low strength, extremely weathered, recovered as low plasticity sandy 100 silt BANDED IRON FORMATION (18.25 to 18.6 m) 19--19BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low 100 plasticity sandy silt BANDED IRON FORMATION 70 (18.6 to 19.5 m) BTF/Metasedimentary GENERAL REMARKS strength, extremely weathered, SARACEN MINERAL HOLDINGS LIMITED 1. Borehole located for the south wastable they extend TSFs THUNDERBOX taken as indicatedBANDED IRON FORMATION REF, NO. REV

Last modified date: 2021-07-08 Printed date: 2021-07-09

Knight Piésold

CONSULTING

P/A NO. PE801-00296/24

FIGURE .

Contr	actor		Edge Drilling		Drillho	le No	0	C-BH05			Page		3 of 3				
Locat	ion		Proposed TSF Cell C Area		Drill Type	6		Hanjin D&E	8D		Date Star	ted	18/Mar/2021				
Coord	linates/	System	306363E, 6879072N / WGS84 UTM Zone 51 J		Total Dep	th		24.1 m			Date Con	pleted	19/Mar/2021				
Hole :	Size		HQ3		Elevation	Ē.		0 m			Logged E	Зу	JY				
Core	Size				Azimuth,	Inclin	ation	.0*			Reviewed	1 Ву					
						1						XIII SE					
ОЕРТН - (М)	ELEVATION - (M)	GRAPHIC LOG	MATERIAL DESCRIPTION	RUN RECOVERY (%)	SAMPLENO	SAMPLE REC. (%)	SAMPLE TYPE	BLOW COUNTS FIELD (MPa)	SPT N VALUE LAB	PARAMETERS RQD RMR SPT 'N' VALUES - x 20 40 60 80		PARAMETERS		SPT 'N' VALUES - x			NOTES
-	-		BANDED IRON FORMATION (19.5 to 21 m) continued from previous page	70													
21-	-21-		BANDED IRON FORMATION		76.8585		1000000	983				\ Push	Tube 2 /				
22-	-22-		(21 to 21.9 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity silt BANDED IRON FORMATION	80	SPT 9	100	SPT	51									
			(21.9 to 30 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity sandy silt	7r													
23	-23-			100													
24-	-24				SPT 10	ψ_{100}	SPT	50			J						
25-	-25-		End of Drillhole: 24.1 m 3 Consecutive SPT N blows > 50 (refusal)														
26- -	-26- -																
27-	-27- - - -																
28-	-28																
29	-29-																
GEN	RALR	EMAR	KS:				SAF	RACEN	INE	RAL HO	LDINGS	LIMIT	ΓED				

- 1. Borehole located to the south east of the existing TSFs 2. Samples $\label{eq:total_south} % \begin{array}{ll} \text{ TSFs} & \text{ TSFs} \\ \text{ TSFs} \\ \text{ TSFs} & \text{ TSFs} \\ \text{ TSFs} \\ \text{ TSFs} & \text{ TSFs} \\ \text{ TSFs} \\ \text{ TSFs} & \text{ TSFs} \\ \text{ TSF$

taken as indicated

- SPT testing undertaken as indicated
 Grouted

THUNDERBOX

P/A NO. PE801-00296/24 REV FIGURE .

Contr	actor		Edge Drilling		_ Drillho	le No	0	C-BH06				Page		1 of 3
Locat	ion		Proposed TSF Cell D Area		_ Drill Type	•		Hanjin D&E	8D			Date Sta	arted	20/Mar/2021
Coord	linates/	System	306555E, 6879944N / WGS84 UTM Zone 51 J		_ Total Dep	oth		27.3 m				Date Co	mpleted	21/Mar/2021
Hole :	Size		HQ3		Elevation	1		0 m				Logged	ву	JY
Core	Size				_ Azimuth,	Inclin	ation	.0"				Reviewe	d By	
	6			Y (%)		(%		UCS FIELD (MPa)	Z BS		ROCK RAME	MASS TERS		
ОЕРТН - (М)	ELEVATION - (M)	GRA PHIC LOG	MATERIAL DESCRIPTION	RUN RECOVERY (%)	SAMPLENO	SAMPLE REC. (%)	SAMPLE TYPE	BLOW COUNTS (PER 6")	SPT N VALUE	SPT	'N' VAL	RQD RMR UES - x		NOTES
1	-1- -2- -3-		CLAY (Uto 0.7 m) CLAY (5C), sandy, low plasticity, red brown and orange brown, moist less than plastic limit, with fine to medium grained gravel. COLLUVIUM - Sand particles are fine to coarse grained and sub-rounded to sub-angular. FERRICRETE (0.7 to 1 m) FERRICRETE, red brown, low strength, extremely weathered, trace vugs up to 10 mm in diameter FERRICRETE (1 to 2 m) FERRICRETE, red brown, very low strength, extremely weathered BANDED IRON FORMATION (2 to 3.52 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity sandy silt BANDED IRON FORMATION (3.52 to 6 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity sandy silt	100	SPT 1	100	SPT	16/42	45		x			
6-	-6-			90										
7-	-7-		BANDED IRON FORMATION (6 to 7.5 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity silt, layered, recovered as low plasticity sandy silt	70	SPT 4	100	SPT	9/19/28	47		x			
8-	-8-		BANDED IRON FORMATION (7.5 to 8.4 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely		SPT 5	100	SPT	8/16/24	40		x		Push	Tube 1
9-	-9-		weathered, layered, recovered as low plasticity sandy silt BANDED IRON FORMATION (8.4 to 10.65 m) BIF/Metasedimentary Rock, yellow and red brown, very low strength, extremely weathered, layered, recovered as low plasticity sandy silt	55	SPT 6	100	SPT	10/20/27	47		x			
	ERAL F		KS:				SAF	RACEN N	AINE	RAL	HOL	DING	S LIMI	TED

Drillhole No

- 2. Samples taken
- as indicated
- 3. SPT testing undertaken as indicated 4. Grouted upon

THUNDERBOX

P/A NO. PE801-00296/24 FIGURE .

Drillhole No Contractor Edge Drilling C-BH06 Page 2 of 3 Proposed TSF Cell D Area Drill Type 20/Mar/2021 Location Hanjin D&B 8D **Date Started** 306555E, 6879944N / WGS84 UTM Zone 51 J 21/Mar/2021 Coordinates/System **Total Depth** 27.3 m **Date Completed Hole Size** HQ3 0 m Elevation Logged By Core Size Azimuth, Inclination , O* Reviewed By UCS FIELD (MPa) KEY ROCK MASS RUN RECOVERY (%) ZESS ZESS **PARAMETERS** 3 COUNTS 200 WALUE - ROD SAMPLE REC. BLOW COUN (PER 6") MATERIAL DESCRIPTION - RMR NOTES ELEVATION DEPTH - (M) GRAPHIC SAMPLE SPT 'N' VALUES - x 20 40 60 80 BANDED IRON FORMATION (8.4 to 10.65 m) 55 continued from previous page BANDED IRON FORMATION (10.65 to 17.9 m) 11 -11 BIF/Metasedimentary Rock, red brown, very low strength, extremely 100 weathered, recovered as low plasticity sandy silt 12 -12 SPT 7 100 SPT 12/21/34 55 35 13--13-100 -14 14 100 15--15 SPT 8 100 SPT 12/19/29 48 70 16--16 100 -17-17-90 BANDED IRON FORMATION 18 -18 (17.9 to 18.4 m) SPT 9 100 SPT 9/13/21 34 BIF/Metasedimentary Rock, grey, yellow and red brown, very low strength, extremely weathered, 100 recovered as low plasticity silt, layered 19--19 BANDED IRON FORMATION 100 (18.4 to 25.35 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely weathered, recovered as low plasticity sandy silt 100 GENERAL REMARKS: SARACEN MINERAL HOLDINGS LIMITED 1. Borehole located to the east of the existing TSFs

- Samples taken
- as indicated
- 3. SPT testing undertaken as indicated
- 4. Grouted upon

THUNDERBOX

P/A NO. PE801-00296/24 REF. NO. REV FIGURE .

Drill Type 20/Mar/2021 Location Proposed TSF Cell D Area Hanjin D&B 8D **Date Started** 306555E, 6879944N / WGS84 UTM Zone 51 J Date Completed 21/Mar/2021 Coordinates/System **Total Depth** 27.3 m **Hole Size** HQ3 0 m JY Elevation Logged By Core Size Azimuth, Inclination , O. Reviewed By UCS FIELD (MPa) KEY ROCK MASS RUN RECOVERY (%) ZESS ZESS **PARAMETERS** 3 COUNTS 200 WALUE - ROD SAMPLEREC BLOW COUN (PER 6") MATERIAL DESCRIPTION - RMR NOTES ELEVATION DEPTH - (M GRAPHIC SAMPLE SPT 'N' VALUES - x 20 40 60 80 BANDED IRON FORMATION 100 (18.4 to 25.35 m) continued from previous page 100 21 -21 X SPT 10 100 SPT 18/38/13 51 80 22 -22 23--23 90 24 24 SPT 11 100 SPT 15/23/36 59 100 25--25 100 BANDED IRON FORMATION (25.35 to 25.5 m) BIF/Metasedimentary Rock, dark grey, very low strength, extremely 26--26 weathered, recovered as low plasticity sandy silt 50 BANDED IRON FORMATION (25.5 to 30 m) BIF/Metasedimentary Rock, red brown, very low strength, extremely -27 weathered, fissile, recovered as low plasticity sandy silt 27-100 SPT 12 100 SPT 24/30 End of Drillhole: 27.3 m 3 Consecutive SPT N blows > 50 (refusal) 28 -28 29. -29 GENERAL REMARKS: SARACEN MINERAL HOLDINGS LIMITED

Drillhole No

C-BH06

Page

3 of 3

- 1. Borehole located to the east of the existing TSFs
- 2. Samples taken
- as indicated

Contractor

Edge Drilling

- 3. SPT testing undertaken as indicated
- 4. Grouted upon

THUNDERBOX

P/A NO. PE801-00296/24 REF. NO. REV FIGURE .

Contractor			Edge Drilling	Edge Drilling D			0	C-BH07						1 of 1						
Locat	ion		Proposed TSF Cell D Area		_ Drill Type			Hanjin D&B	8D			Date S	tarted	22/Mar/2021						
Coord	linates/	System	306518E, 6880385N / WGS84 UTM Zone 51.J		Total Dep	th		9 m				Date C	ompleted	22/Mar/2021						
Hole :	Size		HQ3		Elevation			0 m				Logge	i By	JY						
Core	Size				Azimuth,	inclin	ation	. O*				Review	ed By							
						1			_	F			1							
ОЕРТН - (М)	ELEVATION - (M)	GRA PHIC LOG	MATERIAL DESCRIPTION	RUN RECOVERY (%)	SAMPLENO	SAMPLE REC. (%)	SAMPLETYPE	BLOW COUNTS FIELD (MPa)	SPT N VALUE UGS	PA		PARAMETERS RQD RMR PT 'N' VALUES - x		PARAMETERS		RQD		PARAMETERS		NOTES
9 9 9			SAND (0 to 0.85 m) SAND (SC), gravelly, clayey, fine to medium grained, red brown and orange brown, sub-rounded to sub-angular,	90																
1-	-1-		dry to slightly moist. COLLUVIUM - Clay is low plasticity and Gravel is fine to medium grained. FERRICRETE	100																
2-	-2-		(0.85 to 1.72 m) FERRICRETE, red brown, very low strength, extremely weathered	100	SPT 1	100	\SPT/	12												
	-2		BANDED IRON FORMATION (1.72 to 5.2 m) BIF/Metasedimentary Rock, pale yellow brown, low strength, extremely	100																
3-	-3-		weathered, trace infilled seams and fracture zones, recovered as low plasticity sandy silt	100						5920	1									
35 35				-	SPT 2	100	SPT	17/25/26	51		x									
4-	-4-			100																
12				\forall	SPT 3	100	SPT	12/26/24	50		x									
5	-5-		BANDED IRON FORMATION (5.2 to 6.25 m) BIF/Metasedimentary Rock, red brown, low strength, extremely weathered, recovered as low plasticity sandy	100																
6-	-6-		BANDED IRON FORMATION (6.25 to 7.15 m) BIF/Metasedimentary Rock, pale yellow brown, low strength, extremely weathered, recovered as low	100																
7-	-7- -		plasticity sandy silt BANDED IRON FORMATION (7.15 to 8.2 m) BIF/Metasedimentary Rock, red brown,																	
8-	-8-		low strength, extremely weathered, recovered as low plasticity sandy silt BANDED IRON FORMATION																	
0	0		(8.2 to 9 m) BIF/Metasedimentary Rock, pale yellow brown, low strength, extremely weathered, recovered as low plasticity sandy silt	100																
-			End of Drillhole: 9 m 3 Consecutive SPT N blows > 50 (refusal)						13											
1. Bo		locat	KS: ed to the east of the existing TSFs			_	SAF	RACEN N					S LIMI	TED						
	mples dicate				-	,0		W Goden	11	IUNI		BOX P/A NO.	n. RI	F. NO. REV						

SPT testing undertaken as indicated
 Grouted upon

FIGURE .

APPENDIX B Borehole Photos

THUNDERBOX GOLD MINE 2021 TSF CELLS C AND D SITE INVESTIGATION BOREHOLE PHOTOGRAPHS

Plate 1: C-BH05 - Location - North

Plate 2: C-BH05 - Location - East

THUNDERBOX GOLD MINE 2021 TSF CELLS C AND D SITE INVESTIGATION BOREHOLE PHOTOGRAPHS

Plate 3: C-BH05 - Location - South

Plate 4: C-BH05 - Location - West

Plate 5: C-BH05 - SPT at 1.5 m

Plate 6: C-BH05 - SPT at 1.5 m

Plate 7: C-BH05 - SPT at 3.0 m

Plate 8: C-BH05 - SPT at 3.0 m

Plate 9: C-BH05 - SPT at 4.5 m

Plate 10: C-BH05 - SPT at 4.5 m

Plate 11: C-BH05 - Core Tray - 0.00 - 5.00 m

Plate 12: C-BH05 - SPT at 6.0 m

Plate 13: C-BH05 - SPT at 6.0 m

Plate 14: C-BH05 - SPT at 7.5 m

Plate 15: C-BH05 - SPT at 7.5 m

Plate 16: C-BH05 - Core Tray - 5.00 - 10.00 m

Plate 17: C-BH05 - SPT at 12.25 m

Plate 18: C-BH05 - SPT at 12.25 m

Plate 19: C-BH05 - SPT at 13.5 m

Plate 20: C-BH05 - SPT at 13.5 m

Plate 21: C-BH05 - Core Tray - 10.00 - 15.00 m

Plate 22: C-BH05 - SPT at 15.0 m

Plate 23: C-BH05 - SPT at 15.0 m

Plate 24: C-BH05 - SPT at 18.0 m

Plate 25: C-BH05 - SPT at 18.0 m

Plate 26: C-BH05 - Core Tray - 15.00 - 20.00 m

Plate 27: C-BH05 - SPT at 21.0 m

Plate 28: C-BH05 - SPT at 21.0 m

Plate 29: C-BH05 - SPT at 24.0 m

Plate 30: C-BH05 - SPT at 24.0 m

Plate 31: C-BH05 - Core Tray - 20.00 - 24.00 m

Plate 32: C-BH06 - Location - North

Plate 33: C-BH06 - Location - East

Plate 34: C-BH06 - Location - South

Plate 35: C-BH06 - Location - West

Plate 36: C-BH06 - SPT at 1.5 m

Plate 37: C-BH06 - SPT at 1.5 m

Plate 38: C-BH06 - SPT at 3.0 m

Plate 39: C-BH06 - SPT at 3.0 m

Plate 40: C-BH06 - SPT at 4.5 m

Plate 41: C-BH06 - SPT at 4.5 m

Plate 42: C-BH06 - Core Tray - 0.00 - 5.00 m

Plate 43: C-BH06 - SPT at 6.0 m

Plate 44: C-BH06 - SPT at 6.0 m

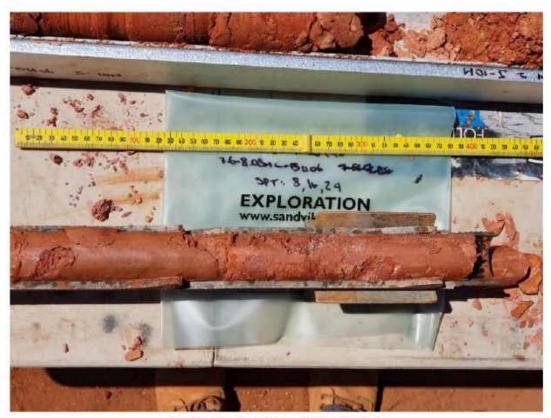


Plate 45: C-BH06 - SPT at 7.5 m

Plate 46: C-BH06 - SPT at 7.5 m

Plate 47: C-BH06 - SPT at 9.0 m

Plate 48: C-BH06 - SPT at 9.0 m

Plate 49: C-BH06 - Core Tray - 5.00 - 10.00 m

Plate 50: C-BH06 - SPT at 12.0 m

Plate 51: C-BH06 - SPT at 12.0 m

Plate 52: C-BH06 - Core Tray - 10.00 - 15.00 m

Plate 53: C-BH06 - SPT at 15.0 m

Plate 54: C-BH06 - SPT at 15.0 m

Plate 55: C-BH06 - SPT at 18.0 m

Plate 56: C-BH06 - SPT at 18.0 m

Plate 57: C-BH06 - Core Tray - 15.00 - 20.00 m

Plate 58: C-BH06 - SPT at 21.0 m

Plate 59: C-BH06 - SPT at 21.0 m

Plate 60: C-BH06 - SPT at 24.0 m

Plate 61: C-BH06 - SPT at 24.0 m

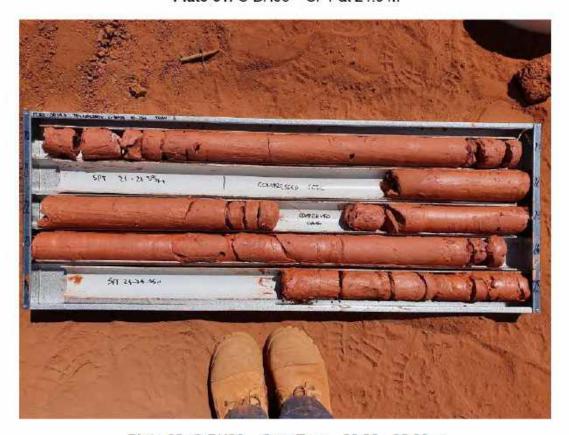


Plate 62: C-BH06 - Core Tray - 20.00 - 25.00 m

Plate 63: C-BH06 - SPT at 27.0 m

Plate 64: C-BH06 - SPT at 27.0 m

Plate 65: C-BH06 - Core Tray - 25.00 - 27.27 m

Plate 66: C-BH07 - Location - North

Plate 67: C-BH07 - Location - East

Plate 68: C-BH07 - Location - South

Plate 69: C-BH07 - Location - West

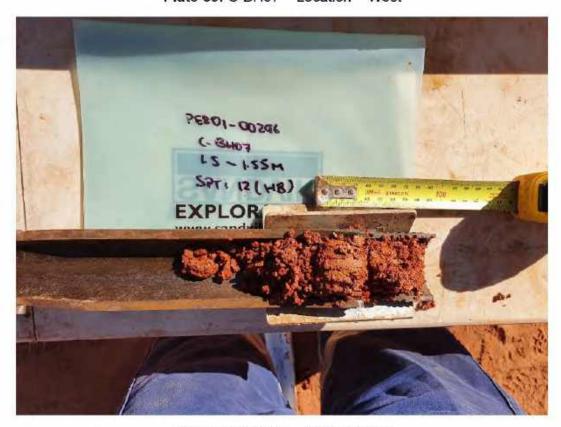


Plate 70: C-BH07 - SPT at 1.5 m

Plate 71: C-BH07 - SPT at 1.5 m

Plate 72: C-BH07 - SPT at 3.0 m

Plate 73: C-BH07 - SPT at 3.0 m

Plate 74: C-BH07 - SPT at 4.5 m

Plate 75: C-BH07 - SPT at 4.5 m

Plate 76: C-BH07 - Core Tray - 0.00 - 4.90 m

THUNDERBOX GOLD MINE 2021 TSF CELLS C AND D SITE INVESTIGATION BOREHOLE PHOTOGRAPHS

Plate 77: C-BH07 - Core Tray - 4.90 - 9.00 m

APPENDIX C Test Pit Logs

Contr	actor		Northern Sta	Г		Test Pit N	lo	C-TP-35	Page	1 of 1
Locat	ion		Proposed TS	F Cell	C Area	Equipment Us	sed	CAT 336D	Date Completed	13/Mar/2021
Coord	dinates		306177E, 68	789251	N	Total Depth		0.8 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS84	81		Elevation		0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLENO	GRAPHIC LOG		MATERIA	al de:	SCRIPTION		NOTES
0.4-	-0.2-		5		FERRICRETE (0.5 to 0.8 m) GRAVEL (GP), clayey, sa Gravel particles are fi	slightly moi: el. COLLUVIUM andy, red brow ine to coarse h. Sand is fir	wn an	rown and orange brown, sub- ith low plasticity clay, tr d orange brown, dry. FERRIC ned, sub-angular to angular medium grained, sub-rounde	La Sa	rge Bulk
	ERAL R		KS: m on Ferric	rete				NORTHERN STAR RE		MITED

- Many roots to 0.2 m depth, large in size (>10 mm)
 Large Bulk Sample taken at 0.3-0.4 m
 No Seepage

- 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24 REF. NO.

Location Coordinates			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306177E,	6879046N	1	_ Total Depth	0.7 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SC <mark>RIPTION</mark>		NOTES
0.2-	-0.2-				SAND (0 to 0.5 m) SAND (SP), fine to med to sub-angular, dry to to medium grained grave	slightly moist, w	brown and orange brow with low plasticity c	n, sub-rounded lay, trace fine	
0.6-	-0.6-				FERRICRETE (0.5 to 0.7 m) GRAVEL (GP), clayey, s Gravel particles are f medium to high strengt sub-angular. Clay is 1	fine to coarse grait th. Sand is fine to	ined, sub-angular to	angular and	
104 74	-				End of Test Pit: 0.7 m Refusal on Ferricrete	i.i			
0.8-	-0.8								
8 5	-								
14	_								
GENE	RALR	EMAR	KS:				NORTHERN STA	AR RESOURCES I II	MITED

Page

1 of 1

- 1. Refusal at 0.7 m on Ferricrete 2. Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306327E,	6879072	Ν	Total Depth	0.8 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	<u>0 m</u>	Reviewed By	
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				to sub-angular, dry to	slightly moist, w	brown and orange brown, sub- with low plasticity clay, to artz and Basalt gravel found	race fine	
0.6-	-0.6-				FERRICRETE				
4	-				Gravel particles are fi	ne to coarse grain. Sand is fine to	nd orange brown, dry. FERRIC ined, sub-angular to angular o medium grained, sub-rounde	r and	
/3									
0.8	0.8			1111	End of Test Pit: 0.8 m				
135	. 3				Refusal on Ferricrete				
i s	-								
) 4	-								
14	- 2								
GENE	RAL R	EMAR	KS:	25 345			NORTHERN STAR RE	SOURCES LIF	MITED

Page

1 of 1

- Refusal at θ.8 m on Ferricrete
- No Vegetation (roots)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contractor Northern Star				Star		Test Pit No	C-TP-38	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306326E,	68792221	N .	Total Depth	0.6 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84	-	Elevation	0 m	Reviewed By	
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL D	ESCRIPTION		NOTES
0.2-	-0.2-				SAND (0 to 0.5 m) SAND (SP), fine to medito sub-angular, dry to medium grained gravel.	slightly moist,	brown and orange brown, with low plasticity cla	sub-rounded y and fine to	
- 0.6	-				Gravel particles are fi medium to high strength sub-angular. Clay is lo	ine to coarse gra	and orange brown, dry. F wined, sub-angular to an co medium grained, sub-r	gular and	
	-				End of Test Pit: 0.6 m Refusal on Ferricrete				
	1								
0.8-	-0.8								
্ৰ									
: +	-								
194	-								
1(4	-								
GENE	RALR	EMAR	KS:			T	NORTHERN STAF	DECOUDEES ! !!	AITED

- Refusal at 0.6 m on Ferricrete
 Few roots to 0.2 m depth, large in size (>10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021	
Соого	linates		306429E,	68791971	N.	Total Depth	0.7 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	2
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				SAND (0 to 0.6 m) SAND (SP), fine to medito sub-angular, dry to medium grained gravel.	slightly moist, w	with low plasticity cl	Lay and fine to bund on surface.	rge Bulk mple
0.6-	-0.6-			× 1	FERRICRETE (0.6 to 0.7 m)	72 4.72	V		
-	-				GRAVEL (GP), clayey, so Gravel particles are for medium to high strength sub-angular. Clay is lo	ine to coarse grai h. Sand is fine to	ned, sub-angular to a	ingular and	
84 72	-				End of Test Pit: 0.7 m Refusal on Ferricrete	1			
0.8-	-0.8								
35	-								
12	-								
(4	- 92								
GENE	RALR	EMAR	KS:				NORTHERN STA	R RESOURCES LI	MITED

Page

1 of 1

- Refusal at 0.7 m on Ferricrete
 Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. Large Bulk Sample taken at 0.4-0.5 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	d 13/Mar/2021
Coordinates 306175E, 6879375N					N.	Total Depth	0.8 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	2300
		-							
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				than plastic limit, tr	ace fine to medium coarse grained and	rown and orange brown, m m grained gravel. COLLUV d sub-rounded to sub-ang	/IUM - Sand gular. Quartz	arge Bulk ample
0.6-	-0.6- 				medium to high strengt sub-angular. Clay is 1	h. Sand is fine to ow plasticity.	nd orange brown, dry. FE ined, sub-angular to ang medium grained, sub-ro	RRICRETE - yular and nunded to	
GENE		EMAR	we-		Refusal on Ferricrete				
GENE	KALR	EMAR	NS.				NORTHERN STAR	RESOURCES	IMITED

Page

1 of 1

- Refusal at θ.8 m on Ferricrete
- No Vegetation (roots)
- 3. Large Bulk Sample taken at 0.2-0.3 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Coordinate System 51 JWGS84 Elevation 0 m Reviewed By State State	Contractor			Northern S	Star		Test Pit No	C-TP-41	Page	1 of 1	
Coordinate System State S	Locati	on		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021	
MATERIAL DESCRIPTION NOTES CLAY (0 to 0 8 m) (0 to 0 8	Coord	inates		306325E,	6879372N	١	Total Depth	1 m	Logged By	JY	
CLAY (0 to 08 m) CLAY (SC), sandy, low plasticity, red brown and orange brown, moist less than plasticitists, trace fine to redsim grained gravel. COLLDYDY - Sand particles are fine to coarse grained and sub-rounded to sub-angular. 0.80.6- 0.80.6- FERMORETE 0.8 to 18	Coord	inate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	2 3	
CLAY (CLAY (SC), andy, low plasticity, red brown and orange brown, moist less than plastic limit, trace fine to redium grained gravel. COLLOYUM - Sand particles are fine to coarse grained and sub-rounded to sub-angular. 0.80.6- 0.80.6- FERMICRETE (G. Sub Im) GANUH (G.) (a sub Im)	TH - (M)	ATION - (M)	PLE TYPE	PLE NO	PHIC LOG		MATERIAL DESCRIPTION				
CLAY (SC), sandy, low plasticity, red brown and orange brown, moist less than plastic limit, trace fine to nedium grained gravel. COLUDIN - Sand particles are fine to coarse grained and sub-rounded to sub-angular. 0.80.80.8	DEP	ELE	SAM	SAM	GRA						
Refusal on Ferricrete	0.4-	-0.4-				FERRICRETE (0.8 to 1 m) CLAY (SC), sandy, low pl than plastic limit, trac particles are fine to co GRAVEL (GP), clayey, san medium to high strength.	ndy, red brown and sarse grained and and arse grained are grained as a grained are grained and are grained are grained and are grained are grained and are grained	d orange brown, dry. FERRIC	RETE -		
Refusal on Ferricrete	3	-									
	1	1			-				-		
GENERAL REMARKS:					-	Refusal on Ferricrete					

- Refusal at 1 m on Ferricrete
 Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Contractor Northern Star				Star		Test Pit No	C-TP-42	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306475E,			Total Depth	1 m	Logged By	JY
1997		vstem	51 J WGS	-		Elevation	0 m	Reviewed By	1.700
00011	mate o	,	0,0,100	9.1				mericinea by	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DI	ESC <mark>RIPTION</mark>		NOTES
0.2-	-0.2-				than plastic limit, tra	ace fine to mediu	rown and orange brown, moist m grained gravel. COLLUVIUM d sub-rounded to sub-angular	- Sand	
(0)	-							Sma	all Sample
D.6-	-0.6-								
0.8-	-0.8				Gravel particles are fi medium to high strength sub-angular. Clay is lo End of Test Pit: 1 m	ine to coarse gra . Sand is fine t	nd orange brown, dry. FERRIC ined, sub-angular to angular o medium grained, sub-rounde	and	
					Refusal on Ferricrete				
GENE	RALR	EMAR	KS:				NORTHERN STAR DE	COURCECT	AITED

- Refusal at 1 m on Ferricrete
 Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. Small Sample taken at 0.5-0.6 m
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	_ Date Completed	13/Mar/2021
Соого				68795251	N.	Total Depth	0.8 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
								-E1	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MAT <mark>eria</mark> l de	SCRIPTION		NOTES
0.6-	-0.2-				FERRICRETE (0 7 to 0.8 m) GRAVEL (GP), clayey, sa	andy, red brown and	nd orange brown, moi: in grained gravel. COLLUVIU d sub-rounded to sub-angula ined, sub-angular to angula	M - Sand ar. Quartz	
0.8	0.8			曲	medium to high strength sub-angular. Clay is lo End of Test Pit: 0.8 m	. Sand is fine to	o medium grained, sub-round	led to	
35	-				Refusal on Ferricrete				
GENE	RAL R	EM A P	KS-						
SEME	-NALK	-MINIK	NO.				NORTHERN STAR R	ESOURCES LIE	MITED

Page

1 of 1

- 1. Refusal at 0.8 m on Ferricrete 2. Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contr	actor		Northern S	Star		Test Pit No	C-TP-44	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coor	dinates		306325E,	6879522	N	Total Depth	0.6 m	Logged By	JY
		ystem	51 J WGS	-	****	Elevation	0 m	Reviewed By	Caron
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.4-	-0.2-				FERRICRETE (0.4 to 0.6 m) GRAVEL (GP), clayey, sa Gravel particles are fine to o and Basalt gravel found FERRICRETE (0.4 to 0.6 m) GRAVEL (GP), clayey, sa Gravel particles are fi	ace fine to medium coarse grained and d on surface. andy, red brown an ine to coarse grai h. Sand is fine to	rown and orange brown, mois grained gravel. COLLUVIUM I sub-rounded to sub-angula and orange brown, dry. FERRI ened, sub-angular to angula o medium grained, sub-round	- Sand r. Quartz CRETE - r and	
0.8-	-0.8-				End of Test Pit: 0.6 m Refusal on Ferricrete				
GEN	ERAL R	EMAR	KS:	,21 161			NORTHERN STAR RE	SOURCES LIF	MITED

- Refusal at θ.6 m on Ferricrete
- 2. Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021		
Coord	linates		306513E,	68795191	Ν	Total Depth	0.9 m	Logged By	JY		
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By			
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESCRIPTION NOTES					
0.4-	-0.2-				than plastic limit, tr	ace fine to media	prown and orange brown, Im grained gravel. COLLU Ind sub-rounded to sub-an	VIUM - Sand			
0.8-	-0.8				FERRICRETE						
-	-				Gravel particles are f	ine to coarse gro h. Sand is fine t	nnd orange brown, dry. F nined, sub-angular to an o medium grained, sub-r	gular and			
-	_				End of Test Pit: 0.9 m Refusal on Ferricrete	PACE TO SAMPLE SERVICE DESCRIPTION					
164					M. PETIAL SEE						
GENE	RALR	EMAR	KS:	81 88	r.		NORTHERN STAF	RESOURCES LIF	MITED		

Page

1 of 1

- 1. Refusal at 0.9 m on Ferricrete
- 2. Few roots to 0.4 m depth, large in size (>10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306025E,	6879601	١	Total Depth	0.9 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	7,300
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MAT <mark>eria</mark> l de	SCRIPTION		NOTES
0.4-	-0.2-				than plastic limit, tr	ace fine to medium	rown and orange brown, a m grained gravel. COLLU d sub-rounded to sub-an	VIUM - Sand gular.	arge Bulk
0.6-	-0.6-								
0.8-	-0.8				are fine to coarse gra	ined, sub-angular	dry. FERRICRETE - Grave to angular and medium d, sub-rounded to sub-a	to high	
-	-								
764 164	-				End of Test Pit: 0.9 m Refusal on Ferricrete				
GENE	RAL R	EMAR	KS:	a 8			NORTHERN STAR	RESOURCES LI	MITED

Page

1 of 1

- Refusal at 0.9 m on Ferricrete
 Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. Large Bulk Sample taken at 0.4-0.5 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contr	actor		Northern S	tar		Test Pit No	C-TP-47	Page	1 of 1
Locat	ion		Proposed 7	TSF Cell	C Area	Equipment Used	CAT 336D	Date Complet	ed 13/Mar/2021
Coord	linates		306174E, (879601	1	Total Depth	0.5 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS8	34		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-					ace fine to medium	rown and orange brown, managed gravel. COLLUM is sub-rounded to sub-ang	/IUM - Sand gular.	
	-			* * * * * *	SILT (0.3 to 0.4 m) SILT (ML), non-plastic	, white, moist les	ss than plastic limit.	į	Small Sample
0.4-	-0.4-				Gravel particles are fi	ine to coarse grain. Sand is fine to	nd orange brown, dry. Fi ined, sub-angular to ang o medium grained, sub-ro	gular and	
1/2	7.5			- Interior to	End of Test Pit: 0.5 m Refusal on Ferricrete				
	-								
0.6-	-0.6-								
- 15	-								
104	-								
- 22	-								
0.8-	-0.8								
35 35									
14	-								
GEN	RAL R	FMAR	KS:		y .				

- 1. Refusal at 0.5 m on Ferricrete
- 2. Few roots to 0.2 m depth, small in size (1-2 mm)
- 3. Small Sample taken at 0.3-0.4 m

4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24 REF. NO.

FIGURE .

REV

Location Coordinates			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306324E,	68796001	N .	Total Depth	1.1 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
- 0.5-	-0.5-				than plastic limit, tra	ace fine to medium	rown and orange brown, moi n grained gravel. COLLUVI d sub-rounded to sub- <mark>an</mark> gui	JM - Sand lar.	
	-							Sma	all Sample
::=	: -				FERRICRETE (0.9 to 1.1 m)				
1-	-1-				GRAVEL (GP), clayey, sa Gravel particles are for	ine to coarse grai h. Sand is fine to	nd orange brown, dry. FERF ined, sub-angular to angul o medium grained, sub-rour	lar and	
:-	-				Refusal on Ferricrete				
e Se	-								
1.5-	- <mark>1</mark> .5-								
. S									
14	-								
GENERAL REMARKS:							NORTHERN STAR F	RESOURCES I II	MITED

Page

1 of 1

- Refusal at 1.1 m on Ferricrete
 Few roots to 0.5 m depth, medium in size (2-10 mm)
- 3. Small Sample taken at 0.5-0.6 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contractor			Northern S	Star		Test Pit No	C-TP-49	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306472E,	68796001	N .	Total Depth	1.2 m	Logged By	JY
		ystem	51 J WGS	_	(2)	Elevation	0 m	Reviewed By	Service
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.5-	-0.5-				than plastic limit, tra	ace fine to medium	rown and orange brown, manage grained gravel. COLLUM d sub-rounded to sub-ang	/IUM - Sand	
1-	-1-				medium to high strength	h. Sand is fine to	nd orange brown, dry. Fl ined, sub-angular to ang o medium grained, sub-ro	ERRICRETE - gular and bunded to	
G	(+				sub-angular. Clay is lo	ow plasticity.			
Çm	-				End of Test Pit: 1.2 m Refusal on Ferricrete				
59	-								
1.5-	-1.5-								
3	,-								
4	-								
GENE	RAL R	EMAR	KS:		7		NODTHEDN STAD	- BESSURES :	NTED.

- Refusal at 1.2 m on Ferricrete
 Few roots to 0.4 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021	
Coord	linates		306043E,	6879627	N .	Total Depth	1.5 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	-
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SC <mark>RIPTION</mark>		NOTES
85 85	-				than plastic limit, tr	ace fine to medium	rown and orange brown, mo m grained gravel. COLLUVI d sub-rounded to sub-angu	JM - Sand	
0.5-	-0.5-								
25	1								
:4	-								
1-	-1-								
•	-				FERRICRETE (1.1 to 1.5 m) GRAVEL (GP), clayey, s	andy, red brown ar	nd orange brown, dry. FER	RICRETE -	
-	-					h. Sand is fine to	ined, sub-angular to angu o medium grained, sub-rou		
5,4									
1.5	-1.5				End of Test Pit: 1.5 m Refusal on Ferricrete				
ंड	, -								
(4	-								
GENERAL REMARKS:							NORTHERN STAR F	RESOURCES LI	MITED

Page

1 of 1

- Refusal at 1.5 m on Ferricrete
 Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306178E,	68796291	N .	Total Depth	0.7 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	2310
			10.00	39 14 (1					
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL	DESCRIPTION		NOTES
0.2-	-0.2-				CLAY (0 to 0.5 m) CLAY (SC), sandy, low than plastic limit, treparticles are fine to and Basalt gravel found	ace fine to medi coarse grained a	um grained gravel. COLI	LUVIUM - Sand	
0.6-	-0.6- -				FERRICRETE (0.5 to 0.7 m) GRAVEL (GP), clayey, s Gravel particles are f medium to high strengt sub-angular. Clay is 1	ine to coarse gr h. Sand is fine	ained, sub-angular to a	angular and	
-	-	-		-	End of Test Pit: 0.7 m	li .			
- 12	1				Refusal on Ferricrete				
0.8-	-0.8								
0.6	-v.o-								
+	-								
7.4									
:4	_								
GENE	GENERAL REMARKS:						NORTHERN STA	AR RESOURCES LII	MITED

Test Pit No

D-TP-02

Page

1 of 1

- Refusal at 0.7 m on Ferricrete
 Few roots to 0.3 m depth, small in size (1-2 mm)
 Small Sample taken at 0.7-0.8 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	13/Mar/2021
Coord	linates		306327E,	68796311	1	Total Depth	0.8 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	<u>0 m</u>	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				than plastic limit, tra	ce fine to medium parse grained and	rown and orange brown, moist m grained gravel. COLLUVIUM d sub-rounded to sub-angular	- Sand	
0.6-	-0.6				FERRICRETE				
-	- 0.8				(0.6 to 0.8 m) GRAVEL (GP), clayey, san Gravel particles are fin	ne to coarse grai . Sand is fine to	nd orange brown, dry. FERRIC ined, sub-angular to angular o medium grained, sub-rounde	and	
0.8	0.8				End of Test Pit: 0.8 m Refusal on Ferricrete				
	-								
14	-								
GENERAL REMARKS:					<u> </u>		NORTHERN STAR RE	SOURCES LIN	MITED

Page

1 of 1

- Refusal at θ.8 m on Ferricrete
- 2. Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area Equi	pment Used	CAT 336D	Date Completed	13/Mar/2021
Соог	dinates		306476E,	68796331	N Total	Depth	0.7 m	Logged By	JY
Coor	dinate S	ystem	51 J WGS	84	Elev	ation	0 m	Reviewed By	
					-			1	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.4-	-0.2-				CLAY (0 to 0.6 m) CLAY (SC), sandy, low plastithan plastic limit, trace fiparticles are fine to coarse	ne to medium	grained gravel. COLLUVIUM	- Sand	
0.6-	-0.6-				FERRICRETE (0.6 to 0.7 m) GRAVEL (GP), clayey, sandy, Gravel particles are fine to	red brown an	nd orange brown, dry. FERRIC	RETE -	
-	- 4				medium to high strength. San sub-angular. Clay is low pla	d is fine to			
74	-				End of Test Pit: 0.7 m Refusal on Ferricrete				
0.8-	-0.8								
: : : : : : : : : : : : : : : : : : :	-								
1:4	-								
GEN	ERAL R	EMAR	KS:				NORTHERN STAR RE	SOURCESLIN	MITED

Page

1 of 1

- Refusal at θ.7 m on Ferricrete
- 2. Few roots to 0.3 m depth, medium in size (2-10 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021	
Coord	dinates		306075E,	68797451	١	Total Depth	0.7 m	Logged By	JY
Coor	dinate S	ystem	51 J WGS	84		Elevation	<u>0 m</u>	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	ESC <mark>RIPTION</mark>		NOTES
0.2-	-0.2-				than plastic limit, tr	ace fine to mediu	rown and orange brown, mo m grained gravel. COLLUVI d sub-rounded to sub-angu	UM - Sand	
0.6-	-0.6-				Gravel particles are f.	ine to coarse gra h. Sand is fine t	nd orange brown, dry. FER ined, sub-angular to angu o medium grained, sub-rou	lar and	
100	0.9			177	End of Test Pit: 0.7 m);			
22					Refusal on Ferricrete				
0.8-	-0.8								
S.	ं								
-	-								
194	-								
114	-								
GEN	ERAL R	EMAR	KS:	21 18			NORTHERN STAR	RESOURCES LI	MITED

Page

1 of 1

- 1. Refusal at 0.7 m on Ferricrete 2. Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area E	quipment Used	CAT 336D	Date Completed	14/Mar/2021
Соого	linates		306210E,	68797461	<u>ч </u>	otal Depth	1.1 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84	E	levation	0 m	Reviewed By	210
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SC <mark>RIPTION</mark>		NOTES
¥ % 0	-				than plastic limit, trace	fine to medium	rown and oran <mark>g</mark> e brown, moist m grained gravel. COLLUVIUM d sub-rounded to sub-angular	- Sand	all Sample
-	-								
0.5-	-0.5-								
82	7/2								
9	16								
્ક	-								
1-	-1-				FERRICRETE (0.9 to 1.1 m) GRAVEL (GP), clayey, sand Gravel particles are fine medium to high strength. sub-angular. Clay is low	Sand is fine to	nd or <mark>ange brown, dry. FERRIC</mark> ined, sub-angular to angular o medium grained, sub-rounde	RETE - and d to	
	-				End of Test Pit: 1.1 m Refusal on Ferricrete				
æ	-								
59									
1.5-	- <mark>1</mark> .5-								
.5	- 7								
3									
	-								
114	-								
GENE	RAL R	EMAR	KS:				NORTHERN STAR RE	SOURCES LI	MITED

Page

1 of 1

- Refusal at 1.1 m on Ferricrete
 Few roots to 0.3 m depth, small in size (1-2 mm)
- 3. Small Sample taken at 0.2-0.3 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contractor		Northern S	Star		Test Pit No	D-TP-07	Page	1 of 1	
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021
Соого	linates		306324E,	68797381	١.	Total Depth	1.1 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
- 0.5-	-0.5-				CLAY (0 to 0.6 m) CLAY (SC), sandy, low y than plastic limit, tra particles are fine to o	ace fine to medium	grained gravel. COLL	UVIUM - Sand	
					FERRICRETE (0.6 to 1.1 m) GRAVEL (GP), clayey, sa Gravel particles are fi medium to high strength sub-angular. Clay is lo	ine to coarse grai h. Sand is fine to	ned, sub-angular to a	ngular and	
1-	-1-								
87	-				End of Test Pit: 1.1 m Refusal on Ferricrete				
.e	-								
1.5-	- <mark>1</mark> .5-								
.57									
	-								
164	-								
GENE	RALR	EMAR	KS:	21 H3			NORTHERN STA	R RESOURCES LIN	MITED

- 1. Refusal at 1.1 m on Ferricrete
- 2. Few roots to $\theta.3$ m depth, large in size (>10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contractor			Northern :	Star		Test Pit No	D-TP-08	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021
Coord	linates		306474E,	68797401	N	Total Depth	1 m	Logged By	JY
Coord	linate S	ystem	51 J WGS		1600	Elevation	0 m	Reviewed By	S ites
\neg									
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SC <mark>R</mark> IPTION		NOTES
0.2-	-0.4-				FERRICRETE (0.7 to 1 m) (GRAVEL (GP), clayey, sa Gravel particles are fi	andy, red brown and to surface. andy, red brown and to surface.	nd orange brown, manage brown, managed gravel. COLLUV	RRICRETE -	
(3) (3)	-								
1	-1			+	End of Test Pit: 1 m				
					Refusal on Ferricrete				
GENE	RALR	EMAR	KS:				NORTHERN STAR	DESCUIDEES LI	AITED

- Refusal at 1 m on Ferricrete
 Many roots to 0.7 m depth, large in size (>10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021
Coord	linates		306535E,	6879740	N .	Total Depth	0.9 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	34		Elevation	0 m	Reviewed By	
			77					ñ.	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL D	ESCRIPTION		NOTES
0.4-	-0.2-				than plastic limit, wit	th fine to medium	prown and orange brown, moist n grained gravel. COLLUVIUM nd sub-rounded to sub-angular	Lai	rge Bulk mple
	1								
0.6-	-0.6-								
	-				Gravel particles are f:	ine to coarse gra h. Sand is fine t	and orange brown, dry. FERRIC sined, sub-angular to angular so medium grained, sub-rounde	and	
/2	-			田					
0.8-	-0.8-								
164	-				End of Test Pit: 0.9 m Refusal on Ferricrete				
GENE	RALR	EMAR	KS:				NORTHERN STAR RE	SOURCES LII	MITED

Page

1 of 1

- Refusal at 0.9 m on Ferricrete
 Many roots to 0.7 m depth, large in size (>10 mm)
- 3. Large Bulk Sample taken at 0.4-0.5 m
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Coordinates Coordinate System (M) - (M) SAMPLE TYPE	306092E, 68798 51 J WGS84	SAND (0 to 0.5 m) SAND (SP), fine to media	slightly moist, w	0.6 m 0 m	Logged By Reviewed By	NOTES
Coordinate System ELEVATION - (M) SAMPLE TYPE		(0 to 0.5 m) SAND (SP), fine to media to sub-angular, dry to	MATERIAL DE um grained, red b slightly moist, v	1	Reviewed By	NOTES
DEPTH - (M) ELEVATION - (M) SAMPLE TYPE	SAMPLE NO GRAPHIC LOG	(0 to 0.5 m) SAND (SP), fine to media to sub-angular, dry to	um grained, red b	SCRIPTION		NOTES
		(0 to 0.5 m) SAND (SP), fine to media to sub-angular, dry to	slightly moist, w			
0.20.2-				orown and orange brown, sub- rith low plasticity clay and	fine to	ge Bulk ple
0.0		Gravel particles are fin	ne to coarse grai . Sand is fine to	nd orange brown, dry. FERRIC ned, sub-angular to angular medium grained, sub-rounde	and	
		End of Test Pit: 0.6 m Refusal on Ferricrete				
0.80.8 -						
GENERAL REMA	BYO					

Page

1 of 1

- Refusal at 0.6 m on Ferricrete
 Few roots to 0.2 m depth, small in size (1-2 mm)
- 3. Large Bulk Sample taken at 0.2-0.3 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Contr	actor		Northern S	Star	Te	est Pit No	D-TP-11	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area Eq	uipment Used	CAT 336D	Date Completed	14/Mar/2021
Coord	dinates		306173E,	6879825	NTo	tal Depth	1 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84	Ele	evation	0 m	Reviewed By	
		Т		T -					
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
	1				than plastic limit, trace	fine to medium	rown and orange brown, moist m grained gravel. COLLUVIUM d sub-rounded to sub- <mark>an</mark> gulan	- Sand	
0.2-	-0.2-								
82	104								
- 4	-								
- 2	1.2			-=-					
82	102								
0.4-	-0.4-								
0.4	274.074								
-	- 4								
89	1 124								
]									
-	14								
ं	7								
0.6-	-0.6-				FERRICRETE				
					(0.6 to 1 m)			950-AM-9 AA	
- 85							nd orange brown, dry. FERRIC ined, sub-angular to angular		
					medium to high strength. 5	and is fine to	o medium grained, sub-rounde	ed to	
					sub-angular. Clay is low p	nasticity.			
্য									
	_								
				-					
0.8-	-8.0-								
ः	1.5			UTUS.					
- 3				444					
-									
130	- 30								
	1				End of Test Pit: 1 m				
0511	EDAL D		1/0	E	Refusal on Ferricrete				

GENERAL REMARKS:

- 1. Refusal at 1 m on Ferricrete
- 2. Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed	TSF Cell	C Area E	quipment Used	CAT 336D	Date Completed	14/Mar/2021	
Coord	linates		306323E,	68798221	1T	otal Depth	1.2 m	Logged By	JY	
Coord	dinate S	ystem	51 J WGS	84	E	levation	0 m	Reviewed By		
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESCRIPTION NOTE				
	-				than plastic limit, trace	fine to medium	rown and orange brown, moist m grained gravel. COLLUVIUM d sub-rounded to sub-angular	- Sand		
0.5-	-0.5-									
9	-									
1-	-1-				FERRICRETE (0.9 to 1.2 m) GRAVEL (GP), clayey, sand Gravel particles are fine	ly, red brown ar	nd orange brown, dry. FERRIC ined, sub-angular to angular	RETE -		
	(+				sub-angular. Clay is low	Sand is fine to plasticity.	o medium grained, sub-rounde	d to		
œ	,-				End of Test Pit: 1.2 m Refusal on Ferricrete					
1.5-	- <mark>1</mark> .5-									
S	-									
	-									
14	-									
GENE	RAL R	EMAR	KS:		1		NORTHERN STAR RE	SOURCES LIN	MITED	

Page

1 of 1

- 1. Refusal at 1.2 m on Ferricrete
- 2. Few roots to 0.1 m depth, medium in size (2-10 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contr	actor		Northern S	Star		Test Pit No	D-TP-13	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021
Coord	linates		306500E,	68798481	N .	Total Depth	1.2 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	= =====================================
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MAT <mark>erial</mark> de	SC <mark>RIPTION</mark>		NOTES
- - - - -	-0.5-				than plastic limit, tra	ace fine to medium	rown and orange brown, m m grained gravel. COLLUV d sub-rounded to sub- <mark>an</mark> g	TUM - Sand	
1-	-1-				FERRICRETE (0.9 to 1.2 m) GRAVEL (GP), clayey, sa Gravel particles are f	andy, red brown as	nd orange brown, dry. FE Ined, sub-angular to ang	RRICRETE -	
9	(=				medium to high strengtl sub-angular. Clay is lo	h. Sand is fine to	medium grained, sub-ro	unded to	
	-				End of Test Pit: 1.2 m Refusal on Ferricrete				
59	1								
1.5-	- <mark>1</mark> .5-								
্ ভ	-								
	-								
164	-								
GENE	RALR	EMAR	KS:				NODTHEDN STAD	DECOURCES LI	AITED

- 1. Refusal at 1.2 m on Ferricrete
- 2. Few roots to 0.3 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Location		Proposed	ISF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021	
Соого	linates		306023E,	6879977	N .	Total Depth	0.9 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
			, ,					==	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DI	-SC <mark>RI</mark> PTION		NOTES
0.4-	-0.2=				CLAY (0.7 to 0.9 m) CLAY (SC), sandy, low processed the state of the s	plasticity, red bace fine to mediu	rown and orange brown, so with low plasticity clay, m grained gravel. COLLUNG d sub-rounded to sub-angui	ist less	
is +	-								
9	(4)				End of Test Pit: 0.9 m Refusal on Ferricrete				
184	-			F	y				
GENE	RALR	EMAR	KS:	21 141			NORTHERN STAR F	RESOURCES LI	MITED

Page

1 of 1

- Refusal at θ.9 m on Ferricrete
- 2. Few roots to 0.3 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed	TSF Cell	C Area Ed	quipment Used	CAT 336D	Date Completed	14/Mar/2021	
Coord	linates		306173E,	68799751	1 To	otal Depth	0.8 m	Logged By	JY	
Coord	linate S	ystem	51 J WGS	84	El	evation	0 m	Reviewed By		
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES	
0.4-	-0.2-				than plastic limit, trace	fine to medium	rown and orange brown, moist i grained gravel. COLLUVIUM i sub-rounded to sub-angular	- Sand	all Sample	
0.6-	-0.6-				FERRICRETE (0.6 to 0.8 m) GRAVEL (GP), clayey, sand	y, r <mark>ed brown</mark> an	nd orange brown, dry. FERRIC	RETE -		
-	-					Sand is fine to	ned, sub-angular to angular medium grained, sub-rounde			
/2	-									
0.8	0.8				End of Test Pit: 0.8 m				_	
35	-				Refusal on Ferricrete					
88	-									
14	_									
GENE	RALR	EMAR	KS:	21 10	4		NORTHERN STAR RE	SOURCES LIF	MITED	

Page

1 of 1

- Refusal at θ.8 m on Ferricrete
- 2. Few roots to 0.3 m depth, medium in size (2-10 mm)
- 3. Small Sample taken at 0.4-0.5 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed	TSF Cell	C Area Ed	quipment Used	CAT 336D	Date Completed	14/Mar/2021	
Соого	linates		306323E,	68799721	N To	otal Depth	1.3 m	Logged By	JY	
Coord	dinate S	ystem	51 J WGS	84	El	evation	0 m	Reviewed By		
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESCRIPTION NOTES				
7 % N	-				than plastic limit, trace	fine to medium	rown and orange brown, moist n grained gravel. COLLUVIUM d sub-rounded to sub-angular	- Sand		
-	-									
0.5-	-0.5-									
- 02	7/2									
	-									
:9	-				FERRICRETE (0.9 to 1.3 m)					
1-	-1-				GRAVEL (GP), clayey, sandy Gravel particles are fine	Sand is fine to	nd orange brown, dry. FERRIC ined, sub-angular to angular o medium grained, sub-rounde	RETE - and d to		
(0)	Э				Sub-angular. Clay 15 low	orasticity.				
85	-									
	_				End of Test Pit: 1.3 m Refusal on Ferricrete					
1.5-	- <mark>1</mark> .5-									
্র										
-										
14	-									
GEN	RAL R	EMAR	KS:		4		NORTHERN STAR RE	SOURCES LI	MITED	

Page

1 of 1

- Refusal at 1.3 m on Ferricrete
 Few roots to 0.7 m depth, small in size (1-2 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed TS	SF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021
Coord	dinates		306473E, 68	79970	N	Total Depth	0.7 m	Logged By	JY
Coor	dinate S	vetem	51 J WGS84		1995	Elevation	0 m	Reviewed By	9 100
00011	amate 5	yatem	510 WOO01	C(1		Lievation	0.111	neviewed by	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MAT <mark>e</mark> rial d	ESCRIPTION		NOTES
0.4-	-0.2- -0.2- -0.4-				than plastic limit, wit	th fine to mediu	prown and orange brown, moingrained gravel. COLLUVIUM and sub-rounded to sub-angul	ar.	mall Sample
0.6-	-0.6- -				FERRICRETE (0.5 to 0.7 m) GRAVEL (GP), clayey, sa Gravel particles are fi medium to high strength sub-angular. Clay is lo	 Sand is fine 	and orange brown, dry. FERR ained, sub-angular to angul to medium grained, sub-roun	CICRETE - ar and ided to	
		-			End of Test Pit: 0.7 m				
0.8-	-				Refusal on Ferricrete				
0.8-	-0.8								
1.0	-								
104	-								
GEN	ERAL R	EMAR	KS-	-	2				
GENI	ENALK	CWAR	No.				NORTHERN STAR R	ESOURCES LI	MITED

Test Pit No

D-TP-17

Page

1 of 1

- Refusal at θ.7 m on Ferricrete
- 2. Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. Small Sample taken at 0.4-0.5 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates		Proposed	TSF Cell	C Area	Equipment Used CAT 336D	CAT 336D	Date Completed		
Coord	linates		306033E,	68800621	N	Total Depth	0.9 m	_ Logged By	JY
Coord	linate S	stem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESCRIPTION NOTES			
0.4-	-0.2-	o	93		FERRICRETE (0.7 to 0.9 m) GRAVEL (GP), clayey, s. Gravel particles are f	andy, red brown a ine to coarse gra h. Sand is fine to ow plasticity.	nd orange brown, dry. FERR. ined, sub-angular to angula o medium grained, sub-round	ICRETE -	
	RALR		KS:				NORTHERN STAR R	ESOURCES LII	MITED

Page

1 of 1

- 2. Few roots to 0.2 m depth, small in size (1-2 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates		Proposed TSF Cell C Area			Equipment Used	CAT 336D		d 14/Mar/2021	
			306022E,		N	Total Depth	0.9 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DI	ESCRIPTION		NOTES
0.4-	-0.2-				FERRICRETE (0.6 to 0.9 m) GRAVEL (GP), clayey, Gravel particles are	sandy, red brown a fine to coarse gragth. Sand is fine to	brown and orange brow with low plasticity of ined, sub-angular to o medium grained, sub	FERRICRETE - angular and	arge Bulk ample
12	-				End of Test Pit: 0.9 Refusal on Ferricreto				
GENE	ERAL R	EMAR	KS:	E 19			NORTHERN STA	AR RESOURCES L	IMITED

Test Pit No

D-TP-19

Page

1 of 1

- 1. Refusal at $\theta.9$ m on Ferricrete 2. Many roots to $\theta.1$ m depth, small in size (1-2 mm)
- 3. Large Bulk Sample taken at 0.2-0.3 m
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

CLAY	Location Coordinates			Proposed			Equipment Used		Date Completed	
MATERIAL DESCRIPTION Output Output				Search Manager		N .	Total Depth	0.9 m	Logged By	JY
CLAY (0 to 0.7 m) CLAY (SC), sandy, low plasticity, red brown and orange brown, moist less than plastic limit, trace fine to medium grained gravel. COLID/UM - Sand particles are fine to coarse grained and sub-rounded to sub-angular. 0.6 0.6- FERRICRETE	Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	=
CLAY (0 to 0.7m) CLAY (SC), sandy, low plasticity, red brown and orange brown, moist less than plastic limit, trace fine to medium grained gravel. COLID/IM - Sand particles are fine to coarse grained and sub-rounded to sub-angular. DA04- PERRICRETE (17 to 0.6m) GRAVEL (GP), clayery, sandy, red brown and orange brown, dry. FERRICRETE - Gravel particles are fine to coarse grained, sub-angular to angular and medium to high strength. Sand is fine to medium grained, sub-rounded to sub-angular. Clay is low plasticity. End of Test Pit: 0.9 m Refusal on Ferricrete	DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL [DESCRIPTION		NOTES
Refusal on Ferricrete	0.4-	-0.4-		v5	• • • • • • • • • • • • • • • • • • •	FERRICRETE (0.7 to 0.9 m) GRAVEL (GP), clayey, so Gravel (GP), clayey, so freed to the strength of the strengt	andy, red brown ine to coarse gr h. Sand is fine	and orange brown, dry.	FERRICRETE - angular and	
GENERAL REMARKS:	124	-								
1. Refusal at 0.9 m on Ferricrete					E 10	2		NORTHERN STA	AR RESOURCES LII	MITED

D-TP-20

Page

1 of 1

- 2. Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area Equ	uipment Used	CAT 336D	Date Completed	14/Mar/2021
Coord	linates		306322E,	68801221	N Tot	al Depth	0.6 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84	Ele	vation	0 m	Reviewed By	
			-				E E		
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				than plastic limit, trace i	Fine to medium	rown and orange brown, moist n grained gravel. COLLUVIUM i sub-rounded to sub- <mark>angular</mark>	- Sand	all Sample
10	-				Gravel particles are fine t	to coarse grained is fine to	nd orange brown, dry. FERRIC ined, sub-angular to angular o medium grained, sub-rounde	and	
0.C	0.6	-			End of Test Pit: 0.6 m	- E6			
9 4	-				Refusal on Ferricrete				
0.8-	-0.8								
0.0	-								
-	-		1/0						
GEN	ERAL R	EMAR	KS:				NORTHERN STAR RE	SOURCESTI	MITED

Page

1 of 1

- Refusal at 0.6 m on Ferricrete
 Few roots to 0.3 m depth, small in size (1-2 mm)
- 3. Small Sample taken at 0.3-0.4 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Contractor		Northern S	Star		Test Pit No	D-TP-22	Page	1 of 1	
Location Coordinates			Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	14/Mar/2021
Coord	linates		306472E,	68801201	N.	Total Depth	0.6 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MAT <mark>eria</mark> l de	SCRIPTION		NOTES
0.2-	-0.2-				CLAY (0 to 0.5 m) CLAY (SC), sandy, low y than plastic limit, tre particles are fine to e	ace fine to medium	grained gravel. COLLU	VIUM - Sand	
- 0.6	- 0.6				FERRICRETE (0.5 to 0.6 m) GRAVEL (GP), clayey, so Gravel particles are for medium to high strength sub-angular. Clay is le	ine to coarse grai h. Sand is fine to ow plasticity.	ned, sub-angular to an	gular and	
	(=				End of Test Pit: 0.6 m Refusal on Ferricrete				
- 0.8	-0.8								
GEN	ERAL R	EMAR	KS:				NODTHEDN STAE	PERCURSES	ALTED

- 1. Refusal at 0.6 m on Ferricrete 2. Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	15/Mar/2021
Соог	dinates		306022E,	6880277N	١	Total Depth	1.3 m	Logged By	JY
Coor	dinate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
								1	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
7 8 0	-				than plastic limit, tra	ce fine to medium parse grained and	rown and orange brown, moist n grained gravel. COLLUVIUM i sub-rounded to sub-angular urface.	- Sand	
2.6									
0.5-	-0.5-								
<u></u>	7/2								
S									
	(e								
::	-								
1-	-1-				FERRICRETE (1 to 1.3 m)			-	
-	(4				GRAVEL (GP), clayey, san Gravel particles are fin medium to high strength	ne to coarse grai . Sand is fine to	nd orange brown, dry. FERRIC Ined, sub-angular to angular o medium grained, sub-rounde	and	
25	1 1 7				sub- <mark>ang</mark> ular. Clay is lo	w plasticity.			
5,4	-				End of Test Pit: 1.3 m Refusal on Ferricrete				
1.5-	-1.5-								
S									
æ	,-								
	-								
184	-								
GEN	ERAL R	EMAR	KS:)	NORTHERN STAR RE	SOURCESTIN	MITED

Page

1 of 1

- 1. Refusal at 1.3 m on Ferricrete
- 2. Few roots to 0.3 m depth, medium in size (2-10 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed 1	SF Cell	C Area Ec	quipment Used	CAT 336D	Date Completed	15/Mar/2021
Coord	linates		306172E, 6	38802751	N To	tal Depth	0.6 m	Logged By	JY
Coord	linate S	stem	51 J WGS8	34	El	evation	0 m	Reviewed By	3104
									= =====================================
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	ESC <mark>RIPTION</mark>		NOTES
0.2-	-0.2-				than plastic limit, trace	fine to medium se grained and	rown and orange brown, moist m grained gravel. COLLUVIUM d sub-rounded to sub- <mark>an</mark> gular	- Sand . Quartz	all Sample
	7 <u>1</u>				Gravel particles are fine	to coarse gra and is fine to	nd orange brown, dry. FERRIC ined, sub-angular to angular o medium grained, sub-rounde	and	
0.8	-0.8				End of Test Pit: 0.6 m Refusal on Ferricrete				
GENE	RAL R	EMAR	KS:	E 18	×		NORTHERN STAR RE	SOURCES	MITED

Page

1 of 1

- Refusal at 0.6 m on Ferricrete
 Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. Small Sample taken at 0.2-0.3 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	15/Mar/2021	
Соого	linates		306322E,	68802731	1	Total Depth	0.7 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				than plastic limit, tra	ace fine to medium coarse grained and	rown and orange brown, mois m grained gravel. COLLUVIUM d sub-rounded to sub-angula	- Sand	
(3) (4)	-				GRAVEL (GP), clayey, sa Gravel particles are fi medium to high strength sub-angular. Clay is lo	ne to coarse gra. . Sand is fine to	nd orange brown, dry. FERRI ined, sub-angular to angula o medium grained, sub-round	r and	
14	-				End of Test Pit: 0.7 m Refusal on Ferricrete				
(4 <u>2</u>	_								
0.8-	-0.8								
82									
100									
14	-								
GENE	RAL R	EMAR	KS:	.ee.	5		NORTHERN STAR RE	SOURCES LIF	MITED

Page

1 of 1

- Refusal at θ.7 m on Ferricrete
- 2. Few roots to 0.3 m depth, medium in size (2-10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Contractor			Northern S	Star		Test Pit No	D-TP-26	Page	1 of 1
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	15/Mar/2021
Coord	linates		306528E,	6880269	N	Total Depth	0.9 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	<u>0 m</u>	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL D	ESCRIPTION		NOTES
0.4-	-0.4-	A.S.	∀ S	90 Section 19 Section	FERRICRETE (0.7 to 0.9 m) SAND (SC), gravelly, obrown, sub-rounded to is low plasticity and End of Test Pit: 0.9 m Refusal on Ferricrete	sandy, red brown a ine to coarse gra the sand is fine to ow plasticity.	and orange brown, dry.	ELUVIUM - Clay Lai Sar	rge Bulk
-	-								
	RAL R		KS:	nicnete			NORTHERN STA	AR RESOURCES LII	MITED

- 2. Few roots to 0.5 m depth, small in size (1-2 mm)
- 3. Large Bulk Sample taken at 0.5-0.6 m
- 4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Complete	d 15/Mar/2021
Coord	linates		306021E,	68804271	٧.	Total Depth	0.5 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	23104
		-							
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	ESC <mark>RIPTION</mark>		NOTES
	-0.2-				than plastic limit, tr	ace fine to mediu	rown and orange brown, m grained gravel. COLLU d sub-rounded to sub-an	UVIUM - Sand ngular.	arge Bulk ample
0.4-	-0.4				FEDDIODETE				
-	-				Gravel particles are f	ine to coarse gra h. Sand is fine t	nd orange brown, dry. I ined, sub-angular to ar o medium grained, sub-	ngular and	
10					End of Test Pit: 0.5 m Refusal on Ferricrete				
0.6-	-0.6-								
-	-								
-	-								
12	1								
0.8-	-0.8								
84	-								
÷	-								
14	_								
GENERAL REMARKS:							NORTHERN STAI	P PESOURCES I	IMITED

D-TP-27

Page

1 of 1

- 1. Refusal at 0.5 m on Ferricrete 2. Few roots to 0.2 m depth, medium in size (2-10 mm)
- 3. Large Bulk Sample taken at 0.2-0.3 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates			Proposed	TSF Cell		Equipment Used	CAT 336D	Date Completed	15/Mar/2021
Coord	linates		306171E,	68804251	N.	Total Depth	0.9 m	Logged By	JA
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	-
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MAT <mark>ERIAL</mark> DI	ESCRIPTION		NOTES
0	ш	8	Ø	Ö	CL AV				
0 00 5	(E				less than plastic limit	, trace fine to	red brown and orange brow medium grained gravel. CO ed and sub-rounded to sub-	LLUVIUM -	
1245	1242								
0.2-	-0.2-								
184									
=	- 4								
- 3	-								
ंड									
0.4-	-0.4								
-									
-	-								
72	72								
	- 7								
0.6-	-0.6-								
	-								
1									
164 74	-				Gravel particles are fi	ne to coarse gra	nd orange brown, dry. FERM ined, sub-angular to angu o medium grained, sub-roum	lar and	
0.8-	-0.8				sub-angular. Clay is lo	w plasticity.	o medium grained, Sub-rou	ided to	
	-								
-		\vdash			End of Test Pit: 0.9 m				
(4	_				Refusal on Ferricrete				
GENE	RAL R	EMAR	KS:				NORTHERN STAR F	RESOURCES LIF	MITED

D-TP-28

Page

1 of 1

- Refusal at 0.9 m on Ferricrete
 Few roots to 0.3 m depth, small in size (1-2 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area Equip	ment Used	CAT 336D	Date Completed	15/Mar/2021
Coord	linates		306321E,	6880423N	N Total	Depth	0.8 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84	Eleva	tion	0 m	Reviewed By	23107
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				SAND (0 to 0.7 m) SAMD (SC), gravelly, clayey, brown, sub-rounded to sub-angis low plasticity and Gravel	gular, dry t	to slightly moist. COLLUVIUM	- Clay	
-	-							Sma	all Sample
0.4-	-0.4								
100									
0.6-	-0.6-			*					
æ									
94 82	9				FERRICRETE				
/2					(0.7 to 0.8 m) GRAVEL (GP), clayey, sandy, Gravel particles are fine to medium to high strength. Sand	coarse grai	ined, sub-angular to angular	and	
0.8	0.8			山口	sub-angular. Clay is low pla End of Test Pit: 0.8 m Refusal on Ferricrete	sticity.	and a majorithmic disconnection of the Philips (1992).	0.0000	
85									
1,4	-								
4	: :=								
GENE	RAL R	EMAR	KS:	# H			NORTHERN STAR RE	SOURCES LIN	MITED

D-TP-29

Page

1 of 1

- Refusal at θ.8 m on Ferricrete
- 2. Few roots to 0.3 m depth, medium in size (2-10 mm)
- 3. Small Sample taken at 0.3-0.4 m
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Contractor		Northern S	Star		Test Pit No	D-TP-30	Page	1 of 1	
Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	Date Completed	15/Mar/2021
Coord	linates		306471E,	6880420	N	Total Depth	1.5 m	Logged By	JY
Coord	linate S	ystem	51 J WGS	84	-	Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG	SAND	MAT <mark>erial</mark> de	SCRIPTION		NOTES
0.5-	-0.5-				(0 to 1.1 m) SAND (SC), gravelly, common sub-rounded to is low plasticity and FERRICRETE (1.1 to 1.5 m) GRAVEL (GP), clayey, so Gravel particles are formatters.	sub-angular, dry Gravel is fine to andy, red brown a ine to coarse grah. Sand is fine to	dium grained, red brown to slightly moist. COLL medium grained. medium grained. nd orange brown, dry. Fined, sub-angular to an o medium grained, sub-ro	ERRICRETE -	
1.5	1.5				End of Test Pit: 1.5 m Refusal on Ferricrete	T. H			
8									
- 4	-								
GENE	RAL R	EMAR	KS:	& 35	r		NORTHERN STAF	R RESOURCES LIN	MITED

- 1. Refusal at 1.5 m on Ferricrete
- 2. Few roots to 0.4 m depth, large in size (>10 mm)
- 3. No Samples taken

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Locat	ion		Proposed	TSF Cell	C Area	Equipment Used	CAT 336D	_ Date Completed	15/Mar/2021
Соого	linates		306046E,	68805791	N	Total Depth	0.7 m	Logged By	JY
Coord	dinate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DE	SCRIPTION		NOTES
0.2-	-0.2-				than plastic limit, tra	ace fine to medium	rown and orange brown, mois mgrained gravel. COLLUVIUM d sub-rounded to sub- <mark>an</mark> gula	1 - Sand	
0.4-	-0.4-							Sma	ill Sample
	-								
0.6-	-0.6-				FERRICRETE (0.6 to 0.7 m) GRAVEL (GP), clavey, se	andv. r <mark>e</mark> d brown ar	nd orange brown, dry. FERRI	CRETE -	
-	-				Gravel particles are f:	ine to coarse grai h. Sand is fine to	ined, sub-angular to angula o medium grained, sub-round	er and	
)(4 /(2	-				End of Test Pit: 0.7 m Refusal on Ferricrete				
0.8-	-0.8								
::	-								
14	-								
GENERAL REMARKS:							NORTHERN STAR RE	ESOURCES LIF	MITED

D-TP-31

Page

1 of 1

- Refusal at 0.7 m on Ferricrete
 Few roots to 0.5 m depth, small in size (1-2 mm)
- 3. Small Sample taken at 0.3-0.4 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

THUNDERBOX

P/A NO. PE801-00296/24

Location Coordinates		Proposed	TSF Cell	C Area	Equipment Used Total Depth	CAT 336D	Date Completed	15/Mar/2021	
		306170E,	6880575N	N		0.8 m	Logged By	JY	
Coord	linate S	ystem	51 J WGS	884		Elevation	0 m	Reviewed By	
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESCRIPTION			NOTES
0.2-	-0.2-				fine to medium grained grained and sub-rounded	ravel. COLLUVIUM	rown, moist near plastic lim	nit, trace to coarse	
9	-				Gravel particles are fin	e to coarse grains. Sand is fine to	nd orange brown, dry. FERRIG ined, sub-angular to angular o medium grained, sub-round	r and	
- 0.8 - -	- 0.8 - -				End of Test Pit: 0.8 m Refusal on Ferricrete				
(4	-								
GENE	RALR	EMAR	KS:	21 14			NORTHERN STAR RE	SOURCES LIE	MITED

Page

1 of 1

- Refusal at θ.8 m on Ferricrete
- 2. Few roots to 0.3 m depth, large in size (>10 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed TSF Cell C Area			Equipment Used	CAT 336D	Date Completed	15/Mar/2021
Coordinates		306320E,	68805731	١.	Total Depth 0.5 m	Logged By	JY		
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
			-		-				
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESCRIPTION			NOTES
0.2-	-0.2-				plastic limit, trace fi particles are fine to d	ine to medium gra	orown and orange brown, moist ined gravel. COLLUVIUM - Sar id sub-rounded to sub-angular	nd	
-	-				Gravel particles are fi	ine to coarse gra h. Sand is fine t	and orange brown, dry. FERRIC Lined, sub-angular to angular o medium grained, sub-rounde	and	
6 8	/2				End of Test Pit: 0.5 m Refusal on Ferricrete				
0.6-	-0.6-								
25	-								
-	-								
12									
0.8-	-0.8								
(32)	-								
14	-								
(4	-								
GENE	RALR	EMAR	KS:	-	V.		NODTHEDN STAD DE	COURCES LIE	AITED

Page

1 of 1

- 1. Refusal at 0.5 m on Ferricrete 2. Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. No Samples taken

Contractor

Northern Star

4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed TSF Cell C Area			Equipment Used	CAT 336D	Date Completed	15/Mar/2021
Coordinates		306170E,	68806691	N'	Total Depth 0.3 m	Logged By	JY		
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	-
DEPTH - (M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESCRIPTION			NOTES
0.2-	-0.2-				to sub-angular, dry to	slightly moist, w	orown and orange brown, sub with low plasticity clay, w gh strength angular Bsalt g	ravel on	rge Bulk mple
14	-	<u> </u>			GRAVEL (GP), clayey, s Gravel particles are f medium to high strengt sub-angular. Clay is l	ine to coarse grai h. Sand is fine to ow plasticity.	nd orange brown, dry. FERRI ined, sub-angular to angula o medium grained, sub-round	ir and	
(8)	19-			(58A-)	End of Test Pit: 0.3 m Refusal on Ferricrete				
0.4-	-0.4-								
- 3	-								
10									
3	7								
0.6-	-0.6-								
194	-								
14	-								
0.8-	-0.8								
25	-								
14	-								
134	-								
GEN	RALR	EMAR	KS:				NODTHEDNISTAD DE	SOURCES LI	MITED

Page

1 of 1

- 1. Refusal at θ .3 m on Ferricrete
- 2. No Vegetation (roots)
- 3. Large Bulk Sample taken at 0.1-0.2 m

Contractor

Northern Star

4. No Seepage 5. Pit Stable

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

Location			Proposed T	C Area Equipmen	_ Equipment Used	CAT 336D	Date Completed 15/Mar/2021 Logged By JY	15/Mar/2021	
Coordinates Coordinate System		306025E, 6	880727	N Total Dept	Total Depth 0.5 m	JY			
		51 J WGS8	4	Elevation		<u>0 m</u>	Reviewed By		
DEPTH-(N)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG	MAT	ERIAL DE	SCRIPTION		NOTES
0.2-					CLAY (0 to 0.4 m) CLAY (SC), sandy, low plasticity surface, moist less than plastic COLLUVIUM - Sand particles are fi sub-angular. FERRICRETE (0.4 to 0.5 m) GRAVEL (GP), clayey, sandy, red	limit,	trace fine to medium graine coarse grained and sub-round	d gravel.	
92	-				Gravel particles are fine to coa medium to high strength. Sand is sub-angular. Clay is low plastic.	rse gra	ined, sub-angular to angular	and	
2	72				End of Test Pit: 0.5 m Refusal on Ferricrete				
(4)	1.4								
0.6-	-0.6								
-	-								
1	(e								
104	: 2								
/2	1								
0.8-	-0.8								
85									
	-								
1.2	- 14								
144	-								
GEN	ERAL R	EMAR	KG-						
			m on Ferr	icrete			NORTHERN STAR RE		MITED

Page

THUNDERBOX

Knight Piésold

P/A NO. PE801-00296/24

FIGURE .

1 of 1

Contractor

No Vegetation (roots)

3. No Samples taken 4. No Seepage 5. Pit Stable

Northern Star

Location			Proposed TSF Cell C Area			Equipment Used	CAT 336D	Date Completed	15/Mar/2021
Coordinates		305985E,	6880797N	V	Total Depth 0.4 m	Logged By	JY		
Coord	linate S	ystem	51 J WGS	84		Elevation	0 m	Reviewed By	
DEPTH-(M)	ELEVATION - (M)	SAMPLE TYPE	SAMPLE NO	GRAPHIC LOG		MATERIAL DESC <mark>RIPTION</mark>			NOTES
0.2-	-0.2-				CLAY (0 to 0.3 m) CLAY (SC), sandy, low p limit, trace fine to me fine to coarse grained	dium grained grav	grey on surface, moist ne vel. COLLUVIUM - Sand parti co sub-angular.	ar plastic cles are	
- 04	-04				(0.3 to 0.4 m) GRAVEL (GP), clayey, sa Gravel particles are fi medium to high strength sub-angular. Clay is lo	ne to coarse grai . Sand is fine to	nd orange brown, dry. FERRI ined, sub-angular to angula medium grained, sub-round	r and	
0.6-	-0.6-				End of Test Pit: 0.4 m Refusal on Ferricrete				
GENE	RAL R	EMAR	KS:				NORTHERN STAR RE		

Page

1 of 1

- 1. Refusal at 0.4 m on Ferricrete 2. Few roots to 0.1 m depth, small in size (1-2 mm)
- 3. No Samples taken
- 4. No Seepage 5. Pit Stable

Contractor

Northern Star

NORTHERN STAR RESOURCES LIMITED THUNDERBOX

P/A NO. PE801-00296/24

APPENDIX D Test Pit Photos

Plate 1: C-TP-35 - Location

Plate 2: C-TP-35 - Test Pit

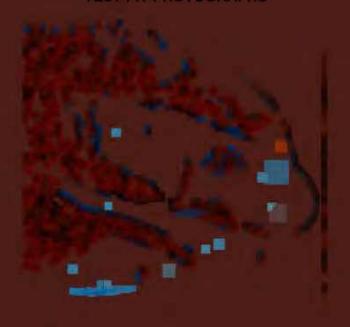


Plate 3: C-TP-35 - Plasticity Test

Plate 4: C-TP-35 - Stockpile

Plate 5: C-TP-36 - Location

Plate 6: C-TP-36 - Test Pit

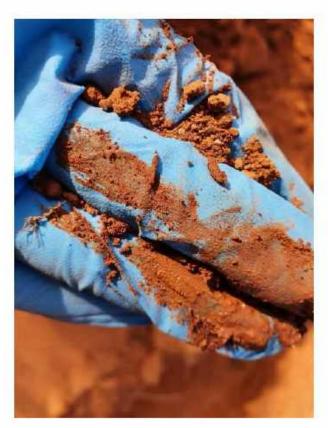


Plate 7: C-TP-36 - Plasticity Test

Plate 8: C-TP-36 - Stockpile

Plate 9: C-TP-37 - Location

Plate 10: C-TP-37 - Test Pit

Plate 11: C-TP-37 - Plasticity Test

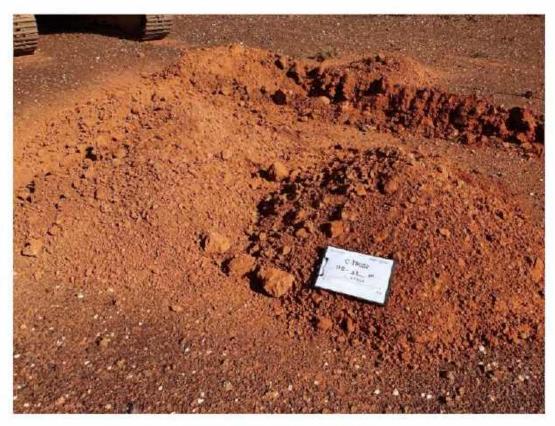


Plate 12: C-TP-37 - Stockpile

Plate 13: C-TP-38 - Location

Plate 14: C-TP-38 - Test Pit

Plate 15: C-TP-38 - Plasticity Test

Plate 16: C-TP-38 - Stockpile

Plate 17: C-TP-39 - Location

Plate 18: C-TP-39 - Test Pit

Plate 19: C-TP-39 - Plasticity Test

Plate 20: C-TP-39 - Stockpile

Plate 21: C-TP-40 - Location

Plate 22: C-TP-40 - Test Pit

Plate 23: C-TP-40 - Plasticity Test

Plate 24: C-TP-40 - Stockpile

Plate 25: C-TP-41 - Location

Plate 26: C-TP-41 - Test Pit

Plate 27: C-TP-41 - Plasticity Test

Plate 28: C-TP-41 - Stockpile

Plate 29: C-TP-42 - Location

Plate 30: C-TP-42 - Test Pit

Plate 31: C-TP-42 - Plasticity Test

Plate 32: C-TP-42 - Stockpile

Plate 33: C-TP-43 - Location

Plate 34: C-TP-43 - Test Pit

Plate 35: C-TP-43 - Plasticity Test

Plate 36: C-TP-43 - Stockpile

Plate 37: C-TP-44 - Location

Plate 38: C-TP-44 - Test Pit

Plate 39: C-TP-44 - Plasticity Test

Plate 40: C-TP-44 - Stockpile

Plate 41: C-TP-45 - Location

Plate 42: C-TP-45 - Test Pit

Plate 43: C-TP-45 - Plasticity Test

Plate 44: C-TP-45 - Stockpile

Plate 45: C-TP-46 - Location

Plate 46: C-TP-46 - Test Pit

Plate 47: C-TP-46 - Plasticity Test

Plate 48: C-TP-46 - Stockpile

Plate 49: C-TP-47 - Location

Plate 50: C-TP-47 - Test Pit

Plate 51: C-TP-47 - Plasticity Test

Plate 52: C-TP-47 - Stockpile

Plate 53: C-TP-48 - Location

Plate 54: C-TP-48 - Test Pit

Plate 55: C-TP-48 - Plasticity Test

Plate 56: C-TP-48 - Stockpile

Plate 57: C-TP-49 - Location

Plate 58: C-TP-49 - Test Pit

Plate 59: C-TP-49 - Plasticity Test

Plate 60: C-TP-49 - Stockpile

Plate 61: D-TP-01 - Location

Plate 62: D-TP-01 - Test Pit

Plate 63: D-TP-01 - Plasticity Test

Plate 64: D-TP-01 - Stockpile

Plate 65: D-TP-02 - Location

Plate 66: D-TP-02 - Test Pit

Plate 67: D-TP-02 - Plasticity Test

Plate 68: D-TP-02 - Stockpile

Plate 69: D-TP-03 - Location

Plate 70: D-TP-03 - Test Pit

Plate 71: D-TP-03 - Plasticity Test

Plate 72: D-TP-03 - Stockpile

Plate 73: D-TP-04 - Location

Plate 74: D-TP-04 - Plasticity Test

Plate 75: D-TP-04 - Stockpile

Plate 76: D-TP-05 - Location

Plate 77: D-TP-05 - Test Pit

Plate 78: D-TP-05 - Plasticity Test

Plate 79: D-TP-05 - Stockpile

Plate 80: D-TP-06 - Location

Plate 81: D-TP-06 - Test Pit

Plate 82: D-TP-06 - Plasticity Test

Plate 83: D-TP-06 - Stockpile

Plate 84: D-TP-07 - Location

Plate 85: D-TP-07 - Test Pit

Plate 86: D-TP-07 - Plasticity Test

Plate 87: D-TP-07 - Stockpile

Plate 88: D-TP-08 - Location

Plate 89: D-TP-08 - Test Pit

Plate 90: D-TP-08 - Plasticity Test

Plate 91: D-TP-08 - Stockpile

Plate 92: D-TP-09 - Location

Plate 93: D-TP-09 - Test Pit

Plate 94: D-TP-09 - Plasticity Test

Plate 95: D-TP-09 - Stockpile

Plate 96: D-TP-10 - Location

Plate 97: D-TP-10 - Test Pit

Plate 98: D-TP-10 - Plasticity Test

Plate 99: D-TP-10 - Stockpile

Plate 100: D-TP-11 - Location

Plate 101: D-TP-11 - Test Pit

Plate 102: D-TP-11 - Plasticity Test

Plate 103: D-TP-11 - Stockpile

Plate 104: D-TP-12 - Location

Plate 105: D-TP-12 - Test Pit

Plate 106: D-TP-12 - Plasticity Test

Plate 107: D-TP-12 - Stockpile

Plate 108: D-TP-13 - Location

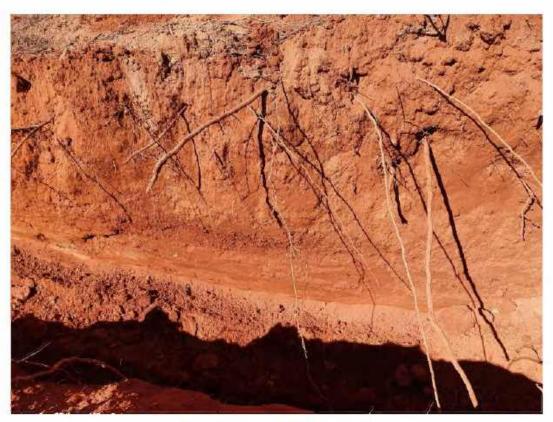


Plate 109: D-TP-13 - Test Pit

Plate 110: D-TP-13 - Plasticity Test

Plate 111: D-TP-13 - Stockpile

Plate 112: D-TP-14 - Location

Plate 113: D-TP-14 - Test Pit

Plate 114: D-TP-14 - Plasticity Test

Plate 115: D-TP-14 - Stockpile

Plate 116: D-TP-15 - Location

Plate 117: D-TP-15 - Test Pit

Plate 118: D-TP-15 - Plasticity Test

Plate 119: D-TP-15 - Stockpile

Plate 120: D-TP-16 - Location

Plate 121: D-TP-16 - Test Pit

Plate 122: D-TP-16 - Plasticity Test

Plate 123: D-TP-16 - Stockpile

Plate 124: D-TP-17 - Location

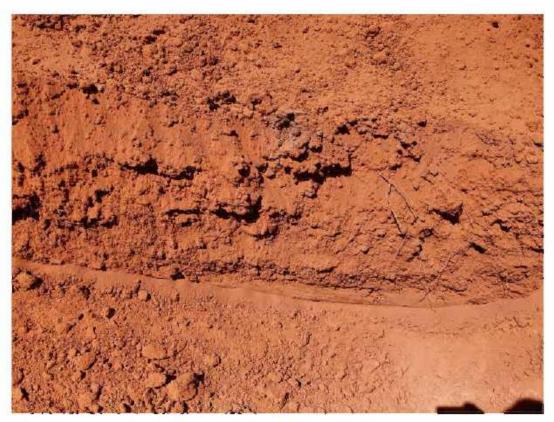


Plate 125: D-TP-17 - Test Pit

Plate 126: D-TP-17 - Plasticity Test

Plate 127: D-TP-17 - Stockpile

Plate 128: D-TP-18 - Location

Plate 129: D-TP-18 - Test Pit

Plate 130: D-TP-18 - Plasticity Test

Plate 131: D-TP-18 - Stockpile

Plate 132: D-TP-19 - Location

Plate 133: D-TP-19 - Test Pit

Plate 134: D-TP-19 - Plasticity Test

Plate 135: D-TP-19 - Stockpile

Plate 136: D-TP-20 - Location

Plate 137: D-TP-20 - Test Pit

Plate 138: D-TP-20 - Plasticity Test

Plate 139: D-TP-20 - Stockpile

Plate 140: D-TP-21 - Location

Plate 141: D-TP-21 - Test Pit

Plate 142: D-TP-21 - Plasticity Test

Plate 143: D-TP-21 - Stockpile

Plate 144: D-TP-22 - Location

Plate 145: D-TP-22 - Test Pit

Plate 146: D-TP-22 - Plasticity Test

Plate 147: D-TP-22 - Stockpile

Plate 148: D-TP-23 - Location

Plate 149: D-TP-23 - Test Pit

Plate 150: D-TP-23 - Plasticity Test

Plate 151: D-TP-23 - Stockpile

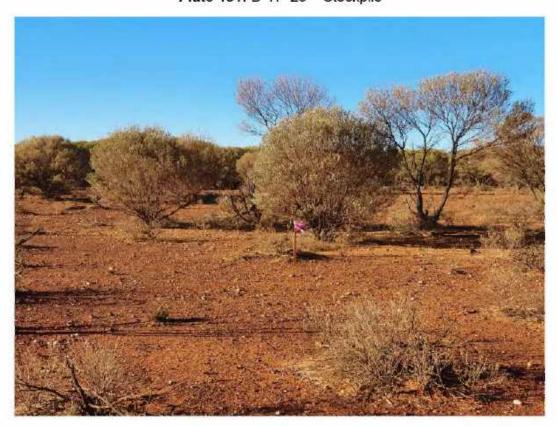


Plate 152: D-TP-24 - Location

Plate 153: D-TP-24 - Test Pit

Plate 154: D-TP-24 - Plasticity Test

Plate 155: D-TP-24 - Stockpile

Plate 156: D-TP-25 - Location

Plate 157: D-TP-25 - Test Pit

Plate 158: D-TP-25 - Plasticity Test

Plate 159: D-TP-25 - Stockpile

Plate 160: D-TP-26 - Location

Plate 161: D-TP-26 - Test Pit

Plate 162: D-TP-26 - Plasticity Test

Plate 163: D-TP-26 - Stockpile

Plate 164: D-TP-27 - Location

Plate 165: D-TP-27 - Test Pit

Plate 166: D-TP-27 - Plasticity Test

Plate 167: D-TP-27 - Stockpile

Plate 168: D-TP-28 - Location

Plate 169: D-TP-28 - Test Pit

Plate 170: D-TP-28 - Plasticity Test

Plate 171: D-TP-28 - Stockpile

Plate 172: D-TP-29 - Location

Plate 173: D-TP-29 - Test Pit

Plate 174: D-TP-29 - Plasticity Test



Plate 175: D-TP-29 - Stockpile



Plate 176: D-TP-30 - Location

Plate 177: D-TP-30 - Test Pit

Plate 178: D-TP-30 - Plasticity Test

Plate 179: D-TP-30 - Stockpile

Plate 180: D-TP-31 - Location

Plate 181: D-TP-31 - Test Pit

Plate 182: D-TP-31 - Plasticity Test

Plate 183: D-TP-31 - Stockpile

Plate 184: D-TP-32 - Location

Plate 185: D-TP-32 - Test Pit

Plate 186: D-TP-32 - Plasticity Test

Plate 187: D-TP-32 - Stockpile

Plate 188: D-TP-33 - Location

Plate 189: D-TP-33 - Test Pit

Plate 190: D-TP-33 - Plasticity Test

Plate 191: D-TP-33 - Stockpile

Plate 192: D-TP-34 - Location

Plate 193: D-TP-34 - Test Pit

Plate 194: D-TP-34 - Plasticity Test

Plate 195: D-TP-34 - Stockpile

Plate 196: D-TP-35 - Location

Plate 197: D-TP-35 - Test Pit

Plate 198: D-TP-35 - Plasticity Test

Plate 199: D-TP-35 - Stockpile

Plate 200: D-TP-36 - Location

Plate 201: D-TP-36 - Test Pit

Plate 202: D-TP-36 - Plasticity Test

Plate 203: D-TP-36 - Stockpile

APPENDIX E Laboratory Test Reports

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: Date Tested: **Knight Piesold** Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: C-BH-05 / SPT2 Job Number: KP C-BH-05_21.10_21.55_ATT Lab ID: Depth(m): 21.10 - 21.55 Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 44.96 **Results Chart** Plastic Limit (%): 30.94 100 Penetration (mm) Plasticity Index (%): 14.02 Liquidity Index (%): Shrinkage Limit (%): 24.47 Linear Shrinkage(%): 7.14 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatu

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

27/04/2021 Client: Date Tested: Knight Piesold

Project: Thunderbox TSF Cells C and D Lab: **EPLAB**

Sample No: C-BH-05 / SPT1 Job Number: KP

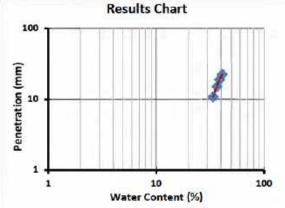
C-BH-05_3.00_3.50_ATT Lab ID:

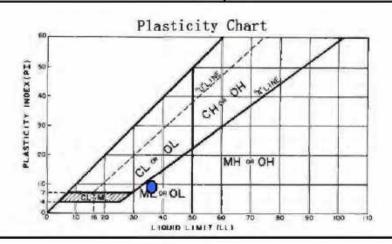
Depth(m): 3.00 - 3.50 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description:

Moisture Content (%): Wet Density (t/m³):

Dry Density (t/m³):


Liquid Limit (%): 37.53 Plastic Limit (%): 28.21


Plasticity Index (%): 9.32

Liquidity Index (%):

Shrinkage Limit (%): 24.00

Linear Shrinkage(%): 4.27

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client **Authorised Signat**

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 27/04/2021 Client: Date Tested: **Knight Piesold** Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: C-BH-06 / SPT1 Job Number: KP Lab ID: C-BH-06_4.50_4.95_ATT Depth(m): 4.50 - 4.95 Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 47.40 **Results Chart** Plastic Limit (%): 36.12 100 Penetration (mm) Plasticity Index (%): 11.28 Liquidity Index (%): Shrinkage Limit (%): 29.66 Linear Shrinkage(%): 4.56 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM

Notes: The sample/s were tested oven dried, dry sieved and in a 125-25

Stored and Tested the Sample as received

Samples supplied by the Client **Authorised Signa**

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

LIQUID LINET ILLE

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 27/04/2021 Client: Date Tested: Knight Piesold Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: C-BH-07 / SPT1 Job Number: KP Lab ID: C-BH-07_3.00_3.45_ATT Depth(m): 3.00 - 3.45 Room Temperature at Test: 20°C Kohei Tested by: Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 53.11 **Results Chart** Plastic Limit (%): 36.63 100 Penetration (mm) Plasticity Index (%): 16.48 Liquidity Index (%): Shrinkage Limit (%): 27.83 Linear Shrinkage(%): 5.17 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) MH OH LIQUID LIMIT ILLE

The sample/s were tested oven dried, dry sieved and in a 125-Notes:

Stored and Tested the Sample as received

Samples supplied by the Client **Authorised Sign**

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 27/04/2021

 Project:
 Thunderbox TSF Cells C and D
 Lab:
 EPLAB

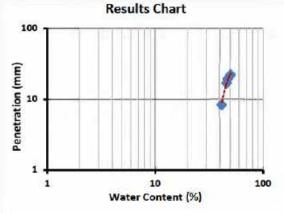
 Sample No:
 C-BH-07 / SPT2
 Job Number:
 KP

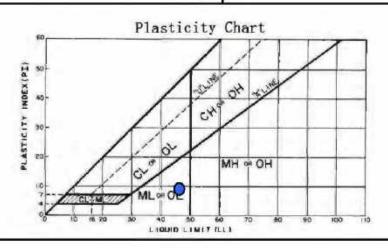
Lab ID: C-BH-07 4.50 4.90 ATT

Depth(m): 4.50 - 4.90 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description:

Moisture Content (%): - Wet Density (t/m³): -


Dry Density (t/m³):


Liquid Limit (%): 46.76 Results Char Plastic Limit (%): 37.45

Plasticity Index (%): 9.31 Liquidity Index (%):

Shrinkage Limit (%): 31.70

Linear Shrinkage(%): 4.84

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: C-TP-35 Job Number: KP Lab ID: C-TP-35 0.30 0.40 ATT Depth(m): 0.30 - 0.40 Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 33.87 **Results Chart** Plastic Limit (%): 17.96 100 Penetration (mm) Plasticity Index (%): 15.91 Liquidity Index (%): Shrinkage Limit (%): 14.15 Linear Shrinkage(%): 4.79 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould. Stored and Tested the Sample as received Samples supplied by the Client **Authorised Signat**

Perth
Unit 3, 34 Sphinx Way
Bibra Lake
WA 6163
Ph: (08) 9418 8742
E-mail: Phillip_li@eprecisionlab.com
Mob: 0422 814 231

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 Date Tested: Client: 29/04/2021 **Knight Piesold** Project: Thunderbox TSF Cells C and D Lab: **EPLAB** C-TP-39 Job Number: KP Sample No: Lab ID: C-TP-39 0.40 0.50 ATT Depth(m): 0.40 - 0.50Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 28.45 **Results Chart** Plastic Limit (%): 22.66 100 Penetration (mm) Plasticity Index (%): 5.79 Liquidity Index (%): Shrinkage Limit (%): 20.48 Linear Shrinkage(%): 2.26 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PI) MH on OH LIQUID LIMIT (LL) Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould. Stored and Tested the Sample as received Samples supplied by the Client Authorised Signature:

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: C-TP-40 Job Number: KP Lab ID: C-TP-40 0.20 0.30 ATT Depth(m): 0.20 - 0.30Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 25.51 **Results Chart** Plastic Limit (%): 14.54 100 Penetration (mm) Plasticity Index (%): 10.97 Liquidity Index (%): Shrinkage Limit (%): 12.34 Linear Shrinkage(%): 5.76 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

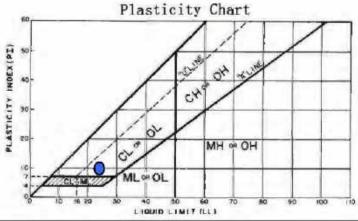
The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorised Signa

Stored and Tested the Sample as received

Samples supplied by the Client

Perth
Unit 3, 34 Sphinx Way
Bibra Lake
WA 6163
Ph: (08) 9418 8742
E-mail: Phillip_li@eprecisionlab.com
Mob: 0422 814 231



ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 Date Tested: Client: 27/04/2021 **Knight Piesold** Project: Thunderbox TSF Cells C and D Lab: **EPLAB** C-TP-42 Job Number: KP Sample No: Lab ID: C-TP-42_0.50_0.60_ATT Depth(m): 0.50 - 0.60Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 26.02 **Results Chart** Plastic Limit (%): 10.95 100 Penetration (mm) Plasticity Index (%): 15.07 Liquidity Index (%): Shrinkage Limit (%): 9.00 Linear Shrinkage(%): 3.34 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould. Stored and Tested the Sample as received Samples supplied by the Client Authorised Signature:

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

27/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: C-TP-46 Job Number: KP Lab ID: C-TP-46 0.40 0.50 ATT Depth(m): 0.40 - 0.50Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 24.41 **Results Chart** Plastic Limit (%): 16.17 100 Penetration (mm) Plasticity Index (%): 8.24 Liquidity Index (%): Shrinkage Limit (%): 14.19 Linear Shrinkage(%): 4.27 10 100 Water Content (%)

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client

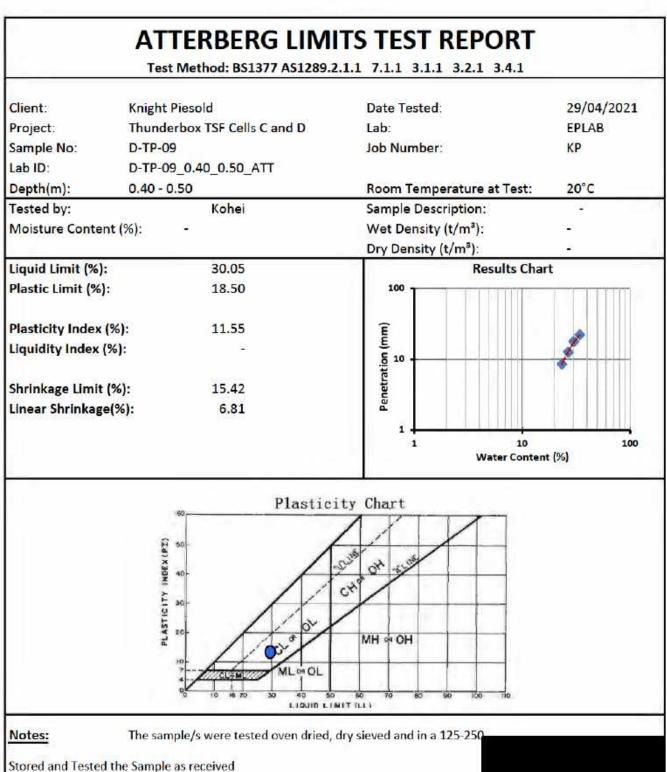
Authorised Signatur

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: D-TP-02 Job Number: KP Lab ID: D-TP-02_0.70_0.80_ATT Depth(m): 0.70 - 0.80Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): **Results Chart** 28.88 Plastic Limit (%): 22.45 100 Penetration (mm) Plasticity Index (%): 6.43 Liquidity Index (%): Shrinkage Limit (%): 20.09 Linear Shrinkage(%): 5.15 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PI) MH of OH LIQUID LIMIT (LL) Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould. Stored and Tested the Sample as received

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorised Signatu

Samples supplied by the Client


Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: D-TP-06 Job Number: KP Lab ID: D-TP-06_0.20_0.30_ATT Depth(m): 0.20 - 0.30Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 22.91 **Results Chart** Plastic Limit (%): 12.20 100 Penetration (mm) Plasticity Index (%): 10.70 Liquidity Index (%): Shrinkage Limit (%): 10.48 Linear Shrinkage(%): 3.30 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatu

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

Authorised Signatu

Samples supplied by the Client

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 29/04/2021

 Project:
 Thunderbox TSF Cells C and D
 Lab:
 EPLAB

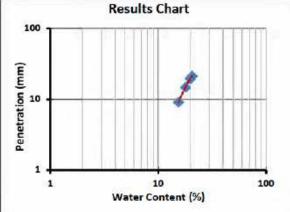
 Sample No:
 D-TP-10
 Job Number:
 KP

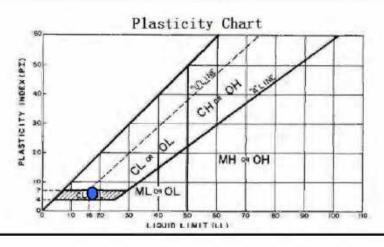
Lab ID: D-TP-10_0.20_0.30_ATT

Depth(m): 0.20 - 0.30 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description: -

Moisture Content (%): - Wet Density (t/m³): -


Dry Density (t/m³): -


Liquid Limit (%): 18.95 R
Plastic Limit (%): 12.58

Plasticity Index (%): 6.37 Liquidity Index (%):

Shrinkage Limit (%): 11.43

Linear Shrinkage(%): 3.25

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatu

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: D-TP-15 Job Number: KP Lab ID: D-TP-15 0.40 0.50 ATT Depth(m): 0.40 - 0.50Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 23.78 **Results Chart** Plastic Limit (%): 14.93 100 Penetration (mm) Plasticity Index (%): 8.85 Liquidity Index (%): Shrinkage Limit (%): 13.02 Linear Shrinkage(%): 2.56 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorised Signature

Stored and Tested the Sample as received

Samples supplied by the Client

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 29/04/2021

Project: Thunderbox TSF Cells C and D Lab: EPLAB

Sample No: D-TP-17 Job Number: KP

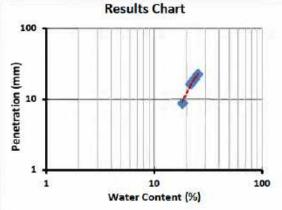
Lab ID: D-TP-17_0.40_0.50_ATT

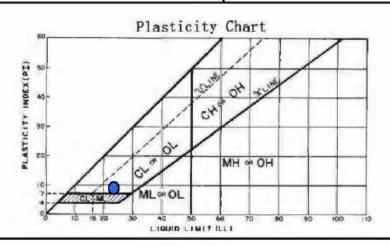
Depth(m): 0.40 - 0.50 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description: -

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):


Liquid Limit (%): 22.54 Results Cha


Plastic Limit (%): 14.60

Plasticity Index (%): 7.94 Liquidity Index (%):

Shrinkage Limit (%): 12.91

Linear Shrinkage(%): 3.61

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatu

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 29/04/2021

Project: Thunderbox TSF Cells C and D Lab: EPLAB

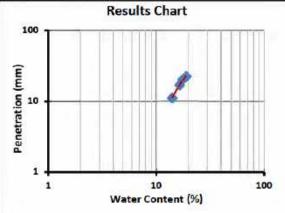
Sample No: D-TP-19 Job Number: KP

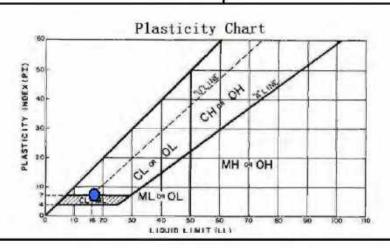
Lab ID: D-TP-19_0.20_0.30_ATT

Depth(m): 0.20 - 0.30 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description:

Moisture Content (%): - Wet Density (t/m³): -


Dry Density (t/m³):


Liquid Limit (%): 16.75 Res
Plastic Limit (%): 10.08

Plasticity Index (%): 6.67 Liquidity Index (%):

Shrinkage Limit (%): 9.20

Linear Shrinkage(%): 3.47

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

29/04/2021 Client: **Knight Piesold** Date Tested:

Project: Thunderbox TSF Cells C and D Lab: **EPLAB**

Sample No: D-TP-21 Job Number: KP

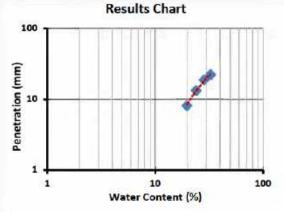
Lab ID: D-TP-21 0.30 0.40 ATT

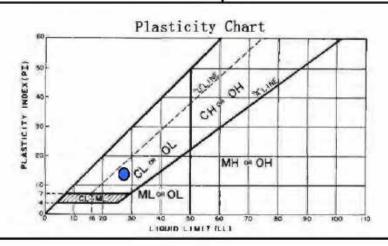
Depth(m): 0.30 - 0.40 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description:

Moisture Content (%): Wet Density (t/m³):

Dry Density (t/m³):


Liquid Limit (%): 27.64


Plastic Limit (%): 14.00

Plasticity Index (%): 13.63 Liquidity Index (%):

Shrinkage Limit (%): 11.51

Linear Shrinkage(%): 6.15

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client **Authorised Signatur**

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 29/04/2021

 Project:
 Thunderbox TSF Cells C and D
 Lab:
 EPLAB

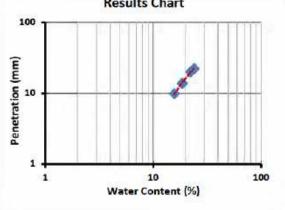
 Sample No:
 D-TP-24
 Job Number:
 KP

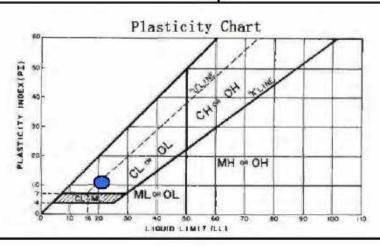
Lab ID: D-TP-24 0.20 0.30 ATT

Depth(m): 0.20 - 0.30 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description: -

Moisture Content (%): - Wet Density (t/m³): -


Dry Density (t/m³):



Plasticity Index (%): 9.96 Liquidity Index (%):

Shrinkage Limit (%): 9.29

Linear Shrinkage(%): 6.82

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 29/04/2021

 Project:
 Thunderbox TSF Cells C and D
 Lab:
 EPLAB

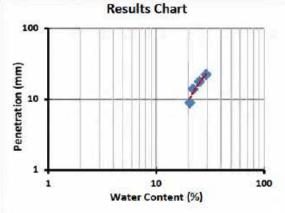
 Sample No:
 D-TP-26
 Job Number:
 KP

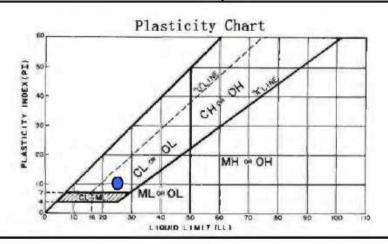
Lab ID: D-TP-26_0.50_0.60_ATT

Depth(m): 0.50 - 0.60 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description: -

Moisture Content (%): - Wet Density (t/m³): -


Dry Density (t/m³):


Liquid Limit (%): 25.29 Results Ch
Plastic Limit (%): 15.10

Plasticity Index (%): 10.19 Liquidity Index (%):

Shrinkage Limit (%): 12.93

Linear Shrinkage(%): 2.91

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: D-TP-27 Job Number: KP Lab ID: D-TP-27_0.20_0.30_ATT Depth(m): 0.20 - 0.30Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 22.03 **Results Chart** Plastic Limit (%): 14.79 100 Penetration (mm) Plasticity Index (%): 7.23 Liquidity Index (%): Shrinkage Limit (%): 13.21 Linear Shrinkage(%): 3.96 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE The sample/s were tested oven dried, dry sieved and in a 125-250 Notes: Stored and Tested the Sample as received

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorised Signatu

Samples supplied by the Client

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 29/04/2021

 Project:
 Thunderbox TSF Cells C and D
 Lab:
 EPLAB

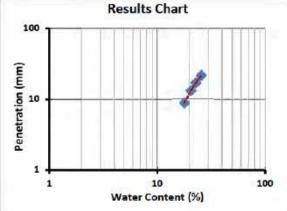
 Sample No:
 D-TP-29
 Job Number:
 KP

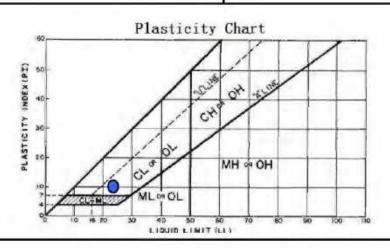
Lab ID: D-TP-29 0.30 0.40 ATT

Depth(m): 0.30 - 0.40 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description: -

Moisture Content (%): - Wet Density (t/m³): -


Dry Density (t/m³):


Liquid Limit (%): 23.14 Results Charles Charle

Plasticity Index (%): 9.19 Liquidity Index (%):

Shrinkage Limit (%): 12.14

Linear Shrinkage(%): 2.95

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatu

ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 29/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: D-TP-31 Job Number: KP Lab ID: D-TP-31_0.30_0.40_ATT Depth(m): 0.30 - 0.40 Room Temperature at Test: 20°C Tested by: Kohei Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): **Results Chart** 19.86 Plastic Limit (%): 15.12 100 Penetration (mm) Plasticity Index (%): 4.74 Liquidity Index (%): Shrinkage Limit (%): 14.00 Linear Shrinkage(%): 5.72 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PL) HO PO HM LIQUID LIMIT ILLE Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould. Stored and Tested the Sample as received Samples supplied by the Client **Authorised Signa**

ATTERBERG LIMITS TEST REPORT

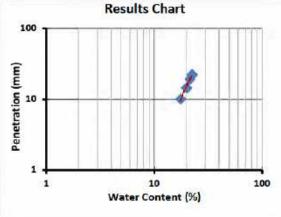
Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 29/04/2021

 Project:
 Thunderbox TSF Cells C and D
 Lab:
 EPLAB

 Sample No:
 D-TP-34
 Job Number:
 KP

Lab ID: D-TP-34 0.10 0.20 ATT


Depth(m): 0.10 - 0.20 Room Temperature at Test: 20°C

Tested by: Kohei Sample Description:

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³): Liquid Limit (%): 20.66 Results Chart

Shrinkage Limit (%): 13.26 Linear Shrinkage(%): 5.90

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signatu

ATTERBERG LIMITS TEST REPORT

Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1

Client: Knight Piesold Date Tested: 30/04/2021

Project: Thunderbox TSF Cells C and D Lab: EPLAB

Sample No: Eastern Waste Dump A Job Number: KP

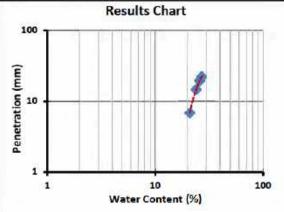
Lab ID: EWD_A_ATT

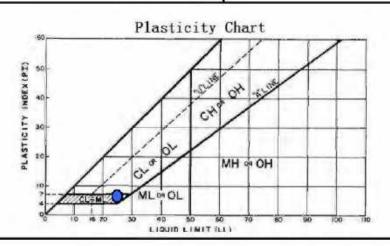
Depth(m): - Room Temperature at Test: 20°C

Tested by: Kohei Sample Description:

Moisture Content (%): - Wet Density (t/m³): -

Dry Density (t/m³):


Liquid Limit (%): 25.07


Plastic Limit (%): 19.18

Plasticity Index (%): 5.90 Liquidity Index (%):

Shrinkage Limit (%): 17.36

Linear Shrinkage(%): 4.95

Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

Stored and Tested the Sample as received

Samples supplied by the Client Authorised Signature:

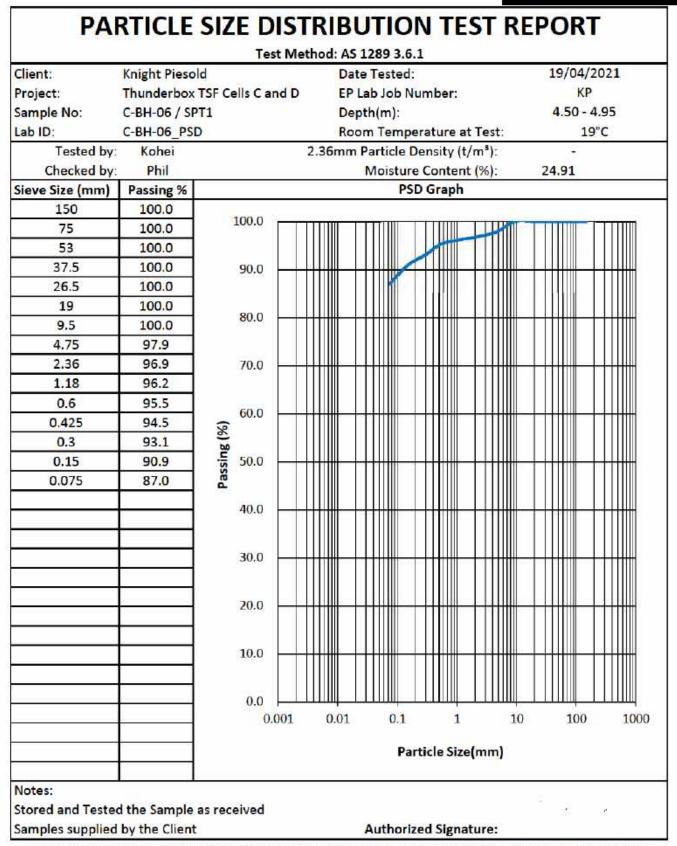
ATTERBERG LIMITS TEST REPORT Test Method: BS1377 AS1289.2.1.1 7.1.1 3.1.1 3.2.1 3.4.1 30/04/2021 Client: **Knight Piesold** Date Tested: Project: Thunderbox TSF Cells C and D Lab: **EPLAB** Sample No: Eastern Waste Dump B Job Number: KP Lab ID: EWD_B_ATT Depth(m): Room Temperature at Test: 20°C Kohei Tested by: Sample Description: Moisture Content (%): Wet Density (t/m³): Dry Density (t/m³): Liquid Limit (%): 26.08 **Results Chart** Plastic Limit (%): 19.71 100 Penetration (mm) Plasticity Index (%): 6.36 Liquidity Index (%): Shrinkage Limit (%): 17.70 Linear Shrinkage(%): 4.11 10 100 Water Content (%) Plasticity Chart LASTICITY INDEX (PI) MH & OH LIQUID LIMIT (LL) Notes: The sample/s were tested oven dried, dry sieved and in a 125-250mm mould.

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Authorised Signatur

Stored and Tested the Sample as received

Samples supplied by the Client


altrova.	had and the reconstruction	ELECTORIST AND	ethod: AS 128	AND TOUR BOOK I		19/04/2021	
Client:	Knight Pieso		Date Te			19/04/2021 KP	
Project:		TSF Cells C and D		lob Number:			
Sample No:	C-BH-05 / SP		Depth(20 <u>11</u> -03-04-0	21.10 - 21		
Lab ID:	C-BH-05_2_I	PSD		emperature at		19°C	
Tested by:				ticle Density (t	145.00	-	
Checked by:			Mo	isture Content	: (%):	24.82	
Sieve Size (mm)	Passing %			PSD Graph			
150	100.0	100.0					
75	100.0	100.0	101111111111111111111111111111111111111		5.4.4. (A. 14.4.)		
53	100.0						
37.5	100.0	90.0	 				++++++
26.5	100.0						
19	100.0	80.0			7		
9.5	100.0	50.0					
4.75	100.0						
2.36	100.0	70.0			++++		
1.18	99.9						
0.6	99.3	60.0					
0.425	98.5						
0.3	97.6	8 (3					
0.15	96.5	Passing (%)	242000 2200		 		
0.075	94.0	Pas					
		40.0					
		40.0					
		30.0			1111111		
		70.0					
		20.0					
		10.0					
		V					
		0.0					
		0.0	0.01	0.1 1	10	100	100
		0.001	0.01	0.1 1	10	100	100
				Particle Size	(mm)		
				त धरम्यत्राचेत्रील तर्गत्रीहरू	MAGRICIA IV		

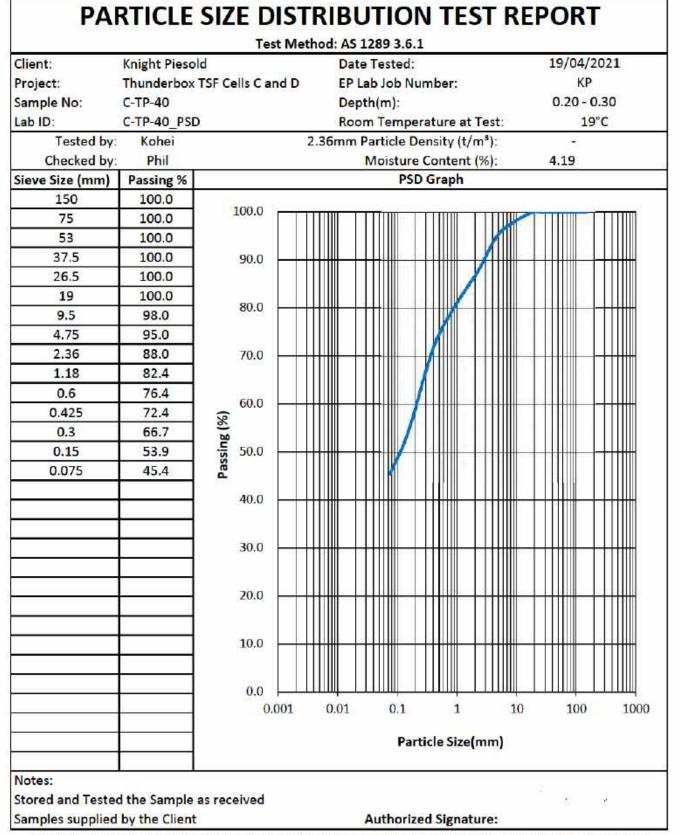
Client:	Knight Pieso	ld	Dat	e Tested:			19/04/20	21	
Project:	Sandy for any of the second for any	TSF Cells C and		ab Job Nun	nber:		KP		
Sample No:	C-BH-05 / SP	T1	Der	th(m):			3.00 - 3.5	50	
Lab ID:	C-BH-05 PSI			200 200	ture at Test:		19°C		
Tested by:					nsity (t/m³):				
Checked by:					ontent (%):		16.19		
Sieve Size (mm)	Passing %				Graph		2000000		
150	100.0				·				
75	100.0	100.0		тиш т				ПППП	
53	100.0					И			
37.5	100.0	90.0							
26.5	100.0	17.75							
19	100.0								
9.5	97.4	80.0	- 						
4.75	79.6								
2.36	55.9	70.0						ШШ	
1.18	44.2	N. Santa							
0.6	34.3	20#340048			1111 1/11				
0.425	30.3	60.0	 	++++++	1111 / 				
0.3	26.9	8							
0.15	20.7	Passing (%)		4444				ЩЩ	
0.075	16.0	as							
error cross-say		1							
		40.0		111111	11// 111				
					<i>y</i>				
	1	30.0			<u> </u>				
	1	-5303110							
		(2000)							
		20.0			****				
		10.0							
		UARANS							
		2.2							
		0.0	1 0.01	0.1	4	10	100	100	
		0.00	1 0.01	0.1	1	10	100	1000	
				Parti	cle Size(mm)				
				1.77					

Client:	Knight Pieso	ld	E	ate Tested:		19/0	4/2021		
Project:	Control of the second second	TSF Cells C and	120	P Lab Job Nu	mber:		ΚP		
Sample No:	C-BH-07 / SP			epth(m):			- 3.45		
Lab ID:	C-BH-07 1			- 10 M M	ature at Test:		19°C		
Tested by				m Particle De		-			
Checked by			-TU-TU-1		Content (%):	26.58			
Sieve Size (mm)	Passing %				Graph				
150	100.0								
75	100.0	100.0			THIN THAN				
53	100.0								
37.5	100.0	90.0			///////////////////////////////////////				
26.5	100.0	50.0							
19	100.0								
9.5	100.0	80.0	- 		 				
4.75	98.7								
2.36	91.2	70.0							
1.18	80.2								
0.6	64.5	V-2000-0							
0.425	58.1	60.0			 	 			
0.3	53.6	Passing (%)			/				
0.15	47.6	50.0			1				
0.075	43.2	ass							
		100		HILL					
	1	40.0					- 		
	1	30.0							
	i i	-500							
		(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c							
		20.0					1111111		
		10.0				aga de la region de			
		USACL SYCS							
		2.0							
		0.0	01 00	1 0.1	1	10 10	0 1000		
		0.0	0.0	1 0.1	1	10 10	0 1000		
				Part	icle Size(mm)				
	-			avetika.					

Perth
Unit 3, 34 Sphinx Way
Bibra Lake
WA 6163
Ph: (08) 9418 8742
E-mail: Phillip_li@eprecisionlab.com
Mob: 0422 814 231

Client:	Knight Pieso	ld	Dat	e Tested:		19/0	4/2021	
Project:	San	TSF Cells C and I		Lab Job Num	ber:	10000000	KP	
Sample No:	C-BH-07 / SP			oth(m):		4.50	0 - 4.90	
Lab ID:	C-BH-07 2 I			m Temperat	ure at Test:		19°C	
Tested by:				Particle Den		-	1414114111111111	
Checked by:				Moisture Co		24.03	8	
Sieve Size (mm)	Passing %			PSD G		20-240-0-		
150	100.0							
75	100.0	100.0				V		
53	100.0							
37.5	100.0	90.0		Substant in	/		- www.	
26.5	100.0	50.0						
19	100.0							
9.5	100.0	80.0	- 	 				
4.75	100.0							
2.36	99.7	70.0						
1.18	97.7							
0.6	89.6	V = 2400 cm						
0.425	84.1	60.0	 	++++++	 			
0.3	79.8	8						
0.15	72.9	Passing (%)						
0.075	65.0	ass						
		100						
		40.0	 		24-848		- 	
		30.0						
	1	-52076						
	\vdash							
		20.0	 					
		10.0						
		USATU PROSP						
		20.3						
		0.0	0.01	0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 1	00 400	
		0.001	0.01	0.1	1	10 1	00 1000	
				Partic	le Size(mm)			

Client: Knight Piesold Date Tested: 28/04/202 Project: Thunderbox TSF Cells C and D EP Lab Job Number: KP	PAI	KIICLE		TRIBUTION TEST RE	PORT	
Sample No: C-TP-35	Client:	Knight Pieso	ELECTORIES I VALVA	n-war-andarahan atahan-war-anah masala	28/04/2021	
Lab ID: C-TP-35_PSD Room Temperature at Test: 19°C Tested by: Kohei Phil	Project:	Thunderbox	TSF Cells C and D	EP Lab Job Number:		
Lab ID: C-TP-35_PSD Room Temperature at Test: 19°C Checked by: Kohei Checked by: Phil Moisture Content (%): 15.47 Sieve Size (mm) Passing % PSD Graph	Sample No:	C-TP-35		Depth(m):	0.30 - 0.40	
Checked by: Phil Moisture Content (%): 15.47		C-TP-35_PSD	į	73 N	19°C	
Sieve Size (mm) Passing % 150 100.0 100.0 75 100.0 100.0 37.5 100.0 37.5 100.0 26.5 100.0 19 100.0 99.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 30.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 1	Tested by:	Kohei		2.36mm Particle Density (t/m³):		
Sieve Size (mm) Passing % 150 100.0 100.0 75 100.0 53 100.0 90.0 26.5 100.0 19 100.0 99.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 30.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 1				Moisture Content (%):	15.47	
150		Passing %				
75 100.0 53 100.0 37.5 100.0 26.5 100.0 19 100.0 9.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 0.001 0.01 0.1 1 100				**		
37.5 100.0 26.5 100.0 19 100.0 9.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 10.0 0.001 0.01 0.1 1 10 100			100.0			
37.5 100.0 26.5 100.0 19 100.0 9.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	U1970-0	202433404220004				
26.5 100.0 19 100.0 9.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100			90.0			
19 100.0 9.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 0.001 0.01 0.1 1 10 100						
9.5 100.0 4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100				111111 1111111 1111111 11111111		
4.75 97.4 2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100		(Proposition of the	80.0	 	 	
2.36 89.6 1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100	SW45	37/20/2009		111111 1111111 1111111/		
1.18 73.6 0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100			70.0	<u> </u>		
0.6 59.7 0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100			7.010			
0.425 50.9 0.3 44.6 0.15 35.5 0.075 29.9 40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100	11-7-11-11-11-11		V-2000			
0.3	2011/200			+++# 		
40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100	12000100		%			
40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100			50 0	<u> </u>		
40.0 30.0 20.0 10.0 0.001 0.01 0.1 1 10 100			ass			
30.0 20.0 10.0 0.001 0.01 0.1 1 10 100	0.075	25.5	•	111111 1111111 //11111 11111111		
20.0 10.0 0.001 0.01 0.1 1 10 100			40.0	 	 	
20.0 10.0 0.001 0.01 0.1 1 10 100				111111 1111111 / 111111 1111111		
20.0 10.0 0.001 0.01 0.1 1 10 100			30.0			
10.0 0.001 0.01 0.1 1 10 100			50.0			
0.001 0.01 0.1 1 10 100						
0.001 0.01 0.1 1 10 100			20.0	 	 	
0.001 0.01 0.1 1 10 100						
0.001 0.01 0.1 1 10 100			10.0			
0.001 0.01 0.1 1 10 100			10.0			
0.001 0.01 0.1 1 10 100						
Particle Size(mm)		-	0.001	0.01 0.1 1 10	100 1000	
Particle Size(mm)				Desately Charles		
				Particle Size(mm)		
No.	N					
Notes: Stored and Tested the Sample as received		Jacob I			37 SS	



Client:	Knight Pieso	d	D	ate Tested:		28/04/	2021	
Project:	The state of the s	TSF Cells C and		P Lab Job Nu	mber:	KP		
Sample No:	C-TP-39			epth(m):		0.40 -	0.40 - 0.50	
Lab ID:	C-TP-39 PSD	ĵ.		700 200 200	rature at Test:	19°C		
Tested by:		×.			ensity (t/m³):	-		
Checked by:					Content (%):	7.17		
Sieve Size (mm)	Passing %				Graph	MOTE		
150	100.0							
75	100.0	100.0						
53	100.0							
37.5	100.0	90.0			1			
26.5	100.0							
19	100.0							
9.5	97.2	80.0			 		 	
4.75	93.2							
2.36	81.5	70.0			///////////////////////////////////////			
1.18	68.4	1.75 - FREE						
0.6	53.8	2750045						
0.425	47.2	60.0	- 		 		++++	
0.3	41.0	Passing (%)						
0.15	31.3	50.0					1111111	
0.075	25.6	Se			/			
					V IIII			
		40.0			(
		30.0						
	1							
		70.0						
		20.0						
		10.0			 		 	
		0.0						
		0.0	0.01	0.1	1 1	0 100	1000	
		0.00				100	1000	
				Part	icle Size(mm)			

		l est ivie	thod: AS 1289 3.6.1	
Client:	Knight Piesol	d	Date Tested:	19/04/2021
Project:	Thunderbox	TSF Cells C and D	EP Lab Job Number:	KP
Sample No:	C-TP-42		Depth(m):	0.50 - 0.60
Lab ID:	C-TP-42_PSD	ĺ	Room Temperature at Test:	19°C
Tested by:	Kohei		2.36mm Particle Density (t/m³):	(8)
Checked by:	Phil		Moisture Content (%):	4.22
Sieve Size (mm)	Passing %		PSD Graph	
150	100.0	100.0		
75	100.0	100.0		
53	100.0			
37.5	100.0	90.0	 	
26.5	100.0			
19	100.0	90.0		
9.5	100.0	80.0	1111III - 1111IIII - 111 I VI - 1111IIII	
4.75	98.8			
2.36	91.4	70.0		
1.18	84.2	As-mas-e		
0.6	76.2	50.0		
0.425	71.4	60.0	 	
0.3	65.0	8	111111 1111111 1111111 1111111	
0.15	48.1	Passing (%)	 	
0.075	35.7	Pas		
		100		
		40.0		
		30.0	++++	
		70.0		
		20.0		
		10.0	++++	
		0.0		
		0.0	0.01 0.1 1 10	100 100
		0.001	0.01 0.1 1 10	100 100
			Particle Size(mm)	
			######################################	

Client:	Knight Pieso	d	D:	te Tested:		1	9/04/20	21
Project:	The state of the s	TSF Cells C and D	1200	Lab Job Num	bor	19 8	KP	
Sample No:	C-TP-46	13F Cells C and D		epth(m):	iber.	1	0.40 - 0.5	in.
Lab ID:	C-TP-46 PSD	·		om Tempera	ture at Test		19°C	
Tested by:				Particle Den			-	£65
Checked by:			2,301111		ontent (%):		0.00	
Sieve Size (mm)	Passing %				Graph		.00	
150	100.0			1300	ларп			
75	100.0	100.0	FEEDUR					тппп
53	100.0							
37.5	100.0	00.0	s s radio					
26.5	100.0	90.0						
19	100.0							
9.5	100.0	80.0			/ 	#		
4.75	99.4				/III			
2.36	94.4	70.0						
1.18	88.4	70.0						
0.6	81.3							
0.425	76.9	60.0	++++			# ++		
0.425	70.3	8						
	50.3	50.0		<i> </i>				
0.15	41.2	20.00 Passing (%)					on the same	
0.075	41.2	۵.						
	-	40.0		- 		₩ + +	+	
		30.0						
	-	30.0						
		20.0					+	
		10.0				an a - A - 14		
		10.0						
		50.50						
		0.0	шШ		шШТТПП	Щ—Ш	ЩШ	тищ
		0.001	0.01	0.1	1	10	100	100
				Danti	la Ciza/mu-1			
				Partic	le Size(mm)			

Client:	Knight Pieso	Elizabeth and	DOLDERS SERVICE AND	1289 3.6.1 te Tested:		28	3/04/202	21	
Project:	Control of the contro	TSF Cells C and	1200	Lab Job Numi	er:	37.	KP		
Sample No:	D-TP-02			pth(m):		0	.70 - 0.8	0	
Lab ID:	D-TP-02 PSE	9		om Temperat	ure at Test		19°C		
Tested by:				Particle Dens			-	0	
Checked by:			Liooiiiii	Moisture Co		2.	64		
Sieve Size (mm)	Passing %			PSD G	The second secon		9.1		
150	100.0								
75	100.0	100.0	11111111		IIIII I IIII			ППП	
53	100.0								
37.5	100.0	90.0		on a sugar and a sugar					
26.5	100.0	30.0							
19	100.0								
9.5	100.0	80.0	- - 	 			++		
4.75	97.4								
2.36	94.4	70.0							
1.18	90.5	70.0							
0.6	85.8								
0.425	82.4	60.0					-		
0.3	77.9	8		III K					
0.15	66.0	Passing (%)							
0.075	55.5	ass 30.0							
0.075	33.3	₾.							
	 	40.0					+		
	 	30.0						ШШ	
	\vdash	50.0				10-01-028			
	\vdash								
		20.0					₩₩	₩	
	\vdash	10.0							
	 	10.0							
		5-25-5							
		0.0			шфтиш		ЩШ	шЩ	
		0.00	1 0.01	0.1	1	10	100	1000	
				Dartis	o Sizo/mm1				
				Partici	e Size(mm)				
Notes:									

Client:	Knight Pieso	Elizabeth Charles	ethod: AS 1289 3.6.1 Date Tested:	28/04/2021
Project:	The state of the s	TSF Cells C and D		KP
Sample No:	D-TP-06	ror cens cana b	Depth(m):	0.20 - 0.30
Lab ID:	D-TP-06 PSE	3	Room Temperature at Test:	19°C
Tested by:			2.36mm Particle Density (t/m³):	
Checked by:			Moisture Content (%):	3.60
Sieve Size (mm)	Passing %		PSD Graph	3.00
150	100.0			
75	100.0	100.0		
53	100.0			
37.5	100.0	90.0		
26.5	100.0	50.0		
19	100.0			
9.5	100.0	80.0	 	
4.75	95.4			
2.36	88.7	70.0	<u> </u>	
1.18	81.4	W-885		
0.6	74.8	859000		
0.425	70.5	60.0	 	
0.3	64.3	%) 8ussing (%)		
0.15	46.7	50.0	<u> </u>	
0.075	38.0	as		
- months and a				
		40.0		
		30.0		
	1			
		70.0		
		20.0		
		10.0	 	
		0.0		
		0.001	0.01 0.1 1 1	0 100 100
		0.001	The state of the s	. 100 100
			Particle Size(mm)	
	1		111	

Client:	Knight Pieso	ld	D	ate Tested:		28/04	/2021	
Project:	The state of the s	TSF Cells C and		P Lab Job Nur	mber:	К		
Sample No:	D-TP-09			epth(m):		0.40 -	0.50	
Lab ID:	D-TP-09_PSE)		70 M 70	ature at Test:		19°C	
Tested by		-		m Particle De		-		
Checked by					Content (%):	5.35		
Sieve Size (mm)	Passing %				Graph	3,-0,-0,-0		
150	100.0				*			
75	100.0	100.0				/	TTTT	
53	100.0							
37.5	100.0	90.0	4. 4.1	and consequences				
26.5	100.0	50.0						
19	98.1							
9.5	95.0	80.0	- 		 	 	1111111	
4.75	89.0							
2.36	79.6	70.0						
1.18	74.1	70.0						
0.6	70.3	V2000						
0.425	68.0	60.0		- 			 	
0.3	63.9	Passing (%)						
0.15	49.4	50.0						
0.075	42.6	ass						
0.070	12.0	1921						
	 	40.0	- 	- 		 	- 	
	1 1							
	 	30.0						
	+	-9869						
	+							
		20.0		++++			 	
	+							
	+	10.0				(a. 7 - 5 - 19 - 19 - 1		
	+	(2000) The control of						
	+	1500						
	1	0.0						
	+	0.0	0.01	0.1	1	100	1000	
	+			Parti	icle Size(mm)			
	+			raid	icia oize(iiiii)			

Client:	Knight Pieso	ld	D	S 1289 3.6.1 ate Tested:		28/04/	2021	
Project:	Control of the contro	TSF Cells C and		Lab Job Nur	mber:	KI		
Sample No:	D-TP-10		D	epth(m):	0.20 -	0.30		
Lab ID:	D-TP-10 PSE	o o		37 30 30	ature at Test:	1	19°C	
Tested by		-		n Particle De				
Checked by					Content (%):	2.33		
Sieve Size (mm)	Passing %				Graph			
150	100.0				_ ·			
75	100.0	100.0					ПППП	
53	100.0				بإإ			
37.5	100.0	90.0		S J August 1	\mathcal{M}			
26.5	100.0	50.0						
19	99.3							
9.5	95.6	80.0	 		 		 	
4.75	91.2							
2.36	78.3	70.0						
1.18	71.1	70.0						
0.6	65.9	V-2000 -0			MILLINI			
0.425	62.6	60.0			/ 	- 	+++++	
0.3	56.0	Passing (%)						
0.15	38.9	50.0						
0.075	27.8	ass						
3.0.0		15111						
	 	40.0	- 	 	 		 	
	1							
	1	30.0						
	1							
		20.0					1111111	
		10.0						
		U. 1987, 1987, 1987						
		36.00						
	1	0.0	1 0.04	0.1	<u>, , , , , , , , , , , , , , , , , , , </u>	0 400	400	
		0.0	0.01	0.1	1 1	0 100	1000	
				Parti	icle Size(mm)			

Client:	Knight Pieso	ELECTRONIC DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE	en ew seneral name at all	1289 3.6.1 te Tested:		13	28/04/20	21
Project:	The state of the s	TSF Cells C and D		Lab Job Num	ber	3	KP	
Sample No:	D-TP-15	ron como cama p		pth(m):			0.40 - 0.5	50
Lab ID:	D-TP-15 PSC)		om Tempera	ture at Test		19°0	
Tested by:				Particle Der			-	
Checked by:			2.00		ontent (%):		5.96	
Sieve Size (mm)	Passing %				Graph		3130	
150	100.0							
75	100.0	100.0	1111111			III I		
53	100.0							
37.5	100.0	90.0						ШШ
26.5	100.0	50.0						
19	100.0							
9.5	100.0	80.0	 					
4.75	99.3							
2.36	94.1	70.0	111111	/				ЩЩ
1.18	87.8	00-56-50 00-						
0.6	82.4	0590046						
0.425	79.6	60.0	 		11111		1111	
0.3	75.7	20.00 Passing (%)						
0.15	62.7	50.0	1111111					ЩЩ
0.075	53.1	Ses						
TO T								
		40.0						
	i i	30.0			 			Ш
	1							
		70.0			1000			
		20.0	1111111					
		10.0			 			
		0.0						
		0.001	0.01	0.1	1	10	100	100
		0.001	0.01	WAL		LU	100	100
				Partio	le Size(mm)			

Client:	Knight Pieso	d	Da	te Tested:		28/04/20	021	
Project:	A CONTRACTOR OF THE PROPERTY O	TSF Cells C and D	EP	Lab Job Num	KP			
Sample No:	D-TP-17		De	pth(m):	0.40 - 0.	.50		
ab ID:	D-TP-17 PSD)		24 20 20	ture at Test:	19°C		
Tested by:	Kohei			Particle Der	-			
Checked by:	Phil			Moisture C	ontent (%):	3.11		
ieve Size (mm)	Passing %				Graph	and the second		
150	100.0							
75	100.0	100.0	1111111	27 N S ()		/	TTTT	
53	100.0							
37.5	100.0	90.0					1111111	
26.5	100.0	PHASCONN.						
19	100.0							
9.5	92.5	80.0	 					
4.75	86.8							
2.36	78.0	70.0			///////////////////////////////////////			
1.18	71.1	DV::::::::::::::::::::::::::::::::::::						
0.6	65.7	50.0			MIII I IIIII			
0.425	62.5	60.0		 			1111111	
0.3	58.3	Passing (%)						
0.15	46.9	50.0				-	111111	
0.075	38.3	Pas						
		40.0	1111111				1111111	
		30.0						
		20.0						
		20.0	7111111					
		10.0					++++	
		0.0						
		0.001	0.01	0.1	1 10	100	1000	
		UNUL	O.O.L			100	1000	
				Partio	:le Size(mm)			
					1117			

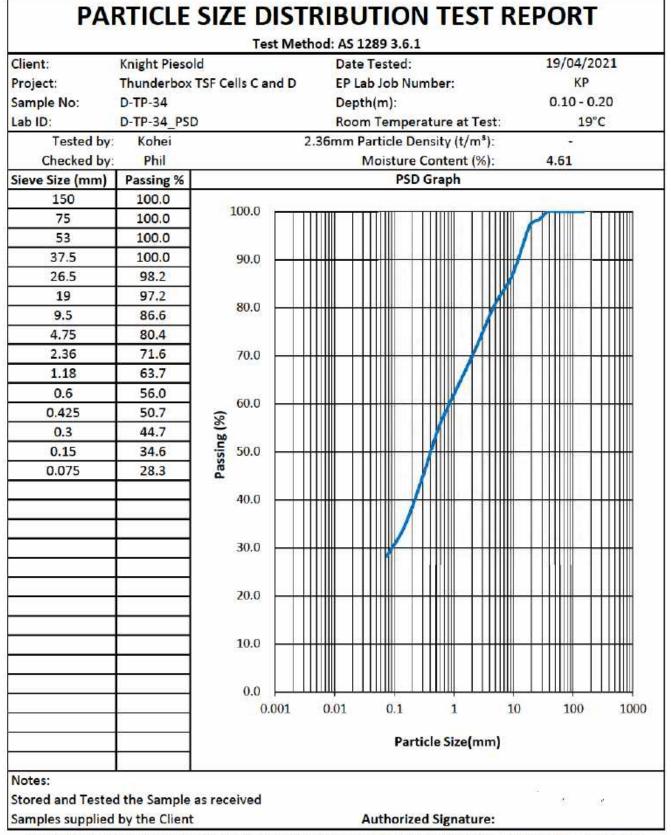
Client:	Knight Pieso	ld	Da	te Tested:		28/04/	2021	
Project:	The state of the s	TSF Cells C and I		Lab Job Nun	nber:	KP		
Sample No:	D-TP-19			epth(m):	0.20 -	0.30		
Lab ID:	D-TP-19 PS			20 20 20	ture at Test:	19	19°C	
Tested by:		-		n Particle Der				
Checked by:					Content (%):	6.44		
Sieve Size (mm)	Passing %				Graph	10.87 8000000		
150	100.0	1827						
75	100.0	100.0	1111111		THE THE			
53	100.0							
37.5	100.0	90.0						
26.5	100.0	17.07.6AV						
19	100.0							
9.5	100.0	80.0			 			
4.75	96.0				/			
2.36	90.6	70.0			41111			
1.18	85.3							
0.6	79.7	275004B						
0.425	75.7	60.0		 			1111111	
0.3	68.1	Passing (%)						
0.15	47.0	50.0 L		+			1111111	
0.075	37.8	as						
		40.0					11111111	
					11111 1 1 1 1 1			
	i i	30.0						
	i i							
		Tan c						
		20.0			111111 111111			
		10.0			11111		++++	
		0.0						
		0.0 \ 0.001	0.01	0.1	1 1	0 100	100	
		0.001	0.01	0.1	a g	.0 100	1000	
				Partic	cle Size(mm)			
					The second secon			

cl:	Vallation No.	Elizabeth and A	ethod: AS 1289 3.6.1	28/04/2021	
Client:	Knight Pieso		Date Tested:		
Project:		TSF Cells C and D	EP Lab Job Number:	KP	
Sample No:	D-TP-21		Depth(m):	0.30 - 0.40	
Lab ID:	D-TP-21_PSE	2	Room Temperature at Test:	19°C	
Tested by:			2.36mm Particle Density (t/m³):	•	
Checked by			Moisture Content (%):	2.55	
Sieve Size (mm)	Passing %		PSD Graph		
150	100.0	100.0			
75	100.0	100.0			
53	100.0				
37.5	100.0	90.0	 	 	
26.5	100.0				
19	100.0	80.0			
9.5	100.0	50.0			
4.75	96.0				
2.36	87.3	70.0			
1.18	81.0				
0.6	74.6	60.0			
0.425	69.4				
0.3	64.6	%) Suissed (%)	111111 1111111 / 111111 1111111		
0.15	52.7	- 등 50.0	 		
0.075	44.1	Pas	111111 1111111 1111111		
		40.0			
		40.0			
		30.0		 	
		70.6			
		20.0			
		10.0	++++	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		See			
		2.0			
		0.0	0.01 0.1 1.1	400 400	
		0.001	0.01 0.1 1 10	100 100	
			Particle Size(mm)		
	+		. a. dele oize(iiiii)		

Client:	Knight Pieso	ld	D	ate Tested:	28/04	/2021		
Project:	- Carlotte - A State of the Control of the Control	TSF Cells C and		P Lab Job Nur	K			
Sample No:	D-TP-24			epth(m):	0.20 -	0.30		
Lab ID:	D-TP-24 PSE	o o		37 30 30	ature at Test:	1	19°C	
Tested by		-		m Particle De				
Checked by				Moisture (3.19			
Sieve Size (mm)					Graph			
150	100.0							
75	100.0	100.0					TTTT	
53	100.0							
37.5	100.0	90.0						
26.5	100.0	17.50						
19	100.0							
9.5	100.0	80.0	- 		/		1-1-1-11	
4.75	100.0							
2.36	94.7	70.0						
1.18	88.7	W-10-1		/				
0.6	83.1	V=24/00.00						
0.425	79.9	60.0	- 	 			 	
0.3	74.9	Passing (%)						
0.15	59.3	50.0						
0.075	46.2	as						
		15.55						
	1	40.0			Bulletin Colored		++++	
	+ 1							
	1 1	30.0						
	1							
		20.0					++++	
		10.0						
		U.S. (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						
	1	15/10						
	1	0.0	04 000			0 400		
	1	0.0	0.01	0.1	1 1	0 100	1000	
				Parti	cle Size(mm)			
	+			1.41.11				

Client:	Knight Pieso	ld	D	ate Tested:	19/04	19/04/2021		
Project:	and the second second second	TSF Cells C and		P Lab Job Nu	414-44-511	KP		
Sample No:	D-TP-26			epth(m):		0.50 - 0.60		
Lab ID:	D-TP-26 PSI	o o		24 20 20	ature at Test:		19°C	
Tested by		-0		m Particle De		-		
Checked by					Content (%):	3.76		
Sieve Size (mm)					Graph			
150	100.0							
75	100.0	100.0		50 C 0 F				
53	100.0							
37.5	100.0	90.0		130000000				
26.5	98.4	50.0						
19	96.7							
9.5	88.5	80.0	- 		 			
4.75	77.3							
2.36	66.4	70.0						
1.18	59.9	70.0						
0.6	54.9							
0.425	50.6	60.0	- 		 		- 	
0.3	44.2	Passing (%)						
0.15	32.8	50.0			MILL IIII			
0.075	25.1	ass						
	1	40.0	- 	 			- - - - - - - - - - - - - -	
	+ 1							
	† †	30.0						
	+ +	: 50.00					0.1101.9504.913	
	+				14911			
	1	20.0			 		- 	
	+ -	10.0						
	1	152.753						
		0.0				10 50		
		0.0	0.01	0.1	1 1	10 10	0 1000	
				Parti	icle Size(mm)			

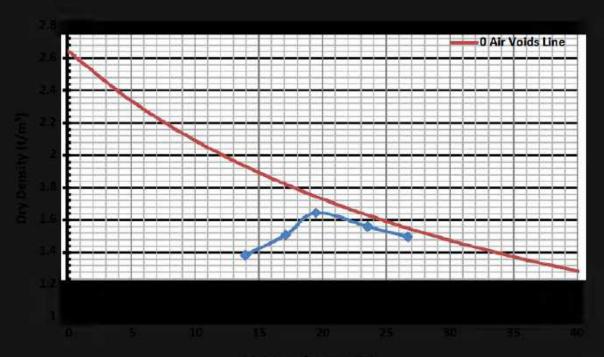
Client:	Knight Pieso	ld	D	S 1289 3.6.1 ate Tested:		28/04,	/2021
Project:	The state of the s	TSF Cells C and	1200	P Lab Job Nur	Κ		
Sample No:	D-TP-27			epth(m):	0.20 -		
Lab ID:	D-TP-27 PSI	2		- TO: 20 20 20 -	ature at Test:		.9°C
Tested by		-		n Particle De			
Checked by					Content (%):	4.02	
Sieve Size (mm)	Passing %				Graph		
150	100.0						
75	100.0	100.0				УПП	TTTT
53	100.0						
37.5	100.0	90.0					
26.5	100.0	970.72.00V					
19	97.5						
9.5	94.4	80.0	- 				
4.75	90.1						
2.36	82.3	70.0					1111111
1.18	76.8	000					
0.6	72.7	8250625					
0.425	69.5	60.0	 	 	<u> </u>		1111111
0.3	65.3	8					
0.15	52.7	Passing (%)					1-1-11
0.075	42.6	Sec					
		40.0			111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1111111
		30.0					
		2003-01					
		20.0			11111 1 11111		
		10.0					1111111
		0.000,000					
		2.2					
		0.0	0.01	0.1		10 100	400
		0.003	0.01	0.1	1	10 100	100
				Parti	cle Size(mm)		
				5- 71 23			


Client:	Knight Pieso	ld	D	ate Tested:		28/04	/2021	
Project:	The state of the s	TSF Cells C and		Lab Job Nur	000000000000000000000000000000000000000	P		
Sample No:	D-TP-29			epth(m):	0.30 -			
Lab ID:	D-TP-29 PS)		701 201 201	ature at Test:		19°C	
Tested by		-			nsity (t/m³):			
Checked by			#1####################################		Content (%):	4.55		
Sieve Size (mm)	Passing %				Graph			
150	100.0							
75	100.0	100.0	1111111				TTTT	
53	100.0							
37.5	100.0	90.0						
26.5	100.0	50.0						
19	100.0							
9.5	97.5	80.0			 		11111111	
4.75	89.2							
2.36	72.5	70.0						
1.18	64.6	7.010						
0.6	59.6	N=0.000 =0						
0.425	57.0	60.0		+++++	- //	 	 	
0.3	52.2	Passing (%)			/			
0.15	37.4	50.0			41111		1111111	
0.075	26.1	ass						
		LEAT-1						
	1 1	40.0					 	
	1							
	1	30.0		1111/				
	 			1 6				
	1	20.0					1111111	
		10.0						
		0.0						
		0.0 F 0.00	0.01	0.1	1	10 100	1000	
		0.0	0.01	U.I	1 3	100	1000	
				Parti	cle Size(mm)			
				a ver MA	energies de saatskoer (New Paris Confession 17			

Client:	Knight Pieso	Elizate II- 11 A. I	thod: AS 12	ested:		28/04/20	021
Project:	The state of the s	TSF Cells C and D	EP Lab Job Number:			KP	
Sample No:	D-TP-31	roi cens cana b	Depth			0.30 - 0.	40
Lab ID:	D-TP-31 PSC)	707	Temperatur	e at Test	19°	
Tested by:				rticle Densit		-	
Checked by:				loisture Con		3.69	
Sieve Size (mm)	Passing %			PSD Gra		3,03	
150	100.0				r		
75	100.0	100.0	1111111 111	Tour Tour		111111111111111111	TTIIII
53	100.0						
37.5	100.0	90.0	0.000	www.			ШШ
26.5	100.0	50.0					
19	100.0						
9.5	100.0	80.0	 	† 		-	+++
4.75	98.4						
2.36	91.6	70.0					111111
1.18	85.2	01156E					
0.6	80.0	877000					
0.425	76.7	60.0				 	111111
0.3	71.5	%) Solution 50.00					
0.15	57.5	50.0		<u> </u>			ЩЩ
0.075	47.7	as					
en constitution and							
		40.0			 		111111
		30.0				\perp	
		70.0		3144			
		20.0					
		10.0				- 	++++++
		0.0					
		0.001	0.01	0.1	1 10	100	100
		0.001	0.01	WAL		100	TV
				Particle :	Size(mm)		

Perth
Unit 3, 34 Sphinx Way
Bibra Lake
WA 6163
Ph: (08) 9418 8742
E-mail: Phillip.li@eprecisionlab.com
Mob: 0422 814 231

Client:	Knight Pieso	d	Date	Date Tested:				30/04/2021		
Project:	Sand the sand the sand the sand	TSF Cells C and		EP Lab Job Number:						
Sample No:	Eastern Was			Depth(m):				KP		
ab ID:	EWD A PSD	571	700	m Tempera	ture at Te	.+.	19°0	•		
Tested by:		9.		article Der			- 15 0	*05		
Checked by				Moisture C			3.16			
Sieve Size (mm)	Passing %				Graph		5.10			
150	100.0	-								
75	94.0	100.0	THUM		ППП П	ППП		ППП		
53	88.9									
37.5	83.4	90.0					1			
26.5	76.4	50.0								
19	64.5						/IIII			
9.5	50.6	80.0		+	+++++++++++++++++++++++++++++++++++++++					
4.75	35.4					IIII 17				
2.36	25.7	70.0								
1.18	20.2	70.0								
0.6	15.7	V								
0.425	13.7	60.0	 	+	+	 	+			
0.3	11.8	8								
0.15	9.4	Passing (%)						ЩЩ		
0.075	7.3	Se								
		555				IIVI II	$\ \ \ _{-} \ \ $			
		40.0	 					111111		
						WIII I				
		30.0		\square	IIII I I					
		-50000								
							44-111			
		20.0								
		10.0								
		0.0								
		0.0 -	0.01	0.1	1	10	100	1000		
		0.00	0.01	0.1	1	LU	100	1000		
				Partio	le Size(mr	n)				
						iii				



Client:	Knight Pieso	d	Date Tested:				30/04/2021	
Project:	The state of the s	TSF Cells C and D			har		KP	
Sample No:	Eastern Was			EP Lab Job Number: Depth(m):				
ab ID:	EWD B PSD	951	701	Tempera	ture at T	ost:	10)°C
Tested by		V	2.36mm Pa				- 13	
Checked by				loisture C			1.90	
Sieve Size (mm)	Passing %		.,,		Graph	0/.	1.50	
150	100.0			135	J. up.ii			
75	94.0	100.0	FIRME DE		111111			
53	89.0							
37.5	83.6	90.0	0.2774					
26.5	76.9	90.0					1	
19	65.1							
9.5	44.0	80.0	++++++		-			
4.75	26.7							
2.36	17.4	70.0					/	
1.18	13.7	70.0						
0.6	11.7							
0.425	10.3	60.0	+++++++++++++++++++++++++++++++++++++++		-	 		
0.3	8.7	%) Suissed (%)						
0.15	6.6	50.0						
0.075	5.2	30.0						
0.075	3.2	•						
	 	40.0			-			
	+							
	+	30.0						
	+	50,0				1/1		G1 (C) (4 (C) (A) (C)
	\vdash							
	-	20.0			-	/		
	+	10.0	12011000					
	-	10.0						
	1	2.33						
		0.0	шШ	шЩ—Ш	шЩТ	шШ	шшш	шш
	+	0.001	0.01	0.1	1	10	100	100
				nea-	.l. c:/	2004		
	\vdash			Partic	le Size(n	ımj		

Test Method: AS1289.5.1.1

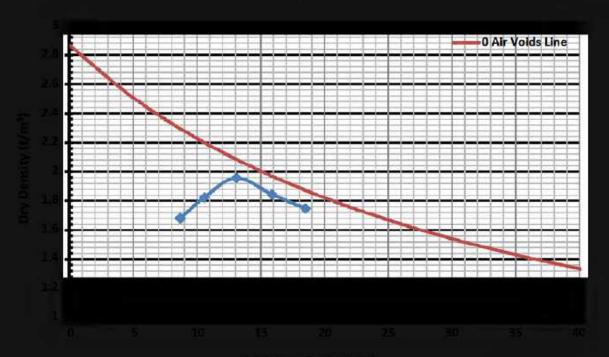
Client: Knight Piesold Date Tested: 15/04/2021

Project Thunderbox TSF Cells C and () £ab. ERLAS

Sample Not C-TP-39 (Inb Mumber KP

LaW (D) C-TP-39_0,40_0.50_SM(D)0

Depth(m): 0.40 - 0.50 Room Temperature at Text: 20*0


Chacked by Phil Sample Description: Tested in Mould A

Mossture Contact (34): " Wet Density (t/m²): -

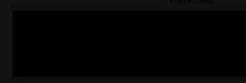
Dry Density (t/m²)

Results

Maximum Size [mm]: 19.00 Maximum Dry Density (t/m²): 1.990
Oversize dry (%) 0.00 Optimum Moisture Content (%): 13.00

Moisture Content (%)

Notes: "Proced Bookly 2,866 t/m"


Stured and Tusted the Sample as received

Samules supplied by the Cheor

distingtional Waynetown

The results of team confirmed apply only to the surveille surveille of team union, otherwise by stated. Reference Should be made to Expression Conference on Conference of States and Team Confirmed Conference of States and Conference of States and

Test Method: AS1289.5.1.1

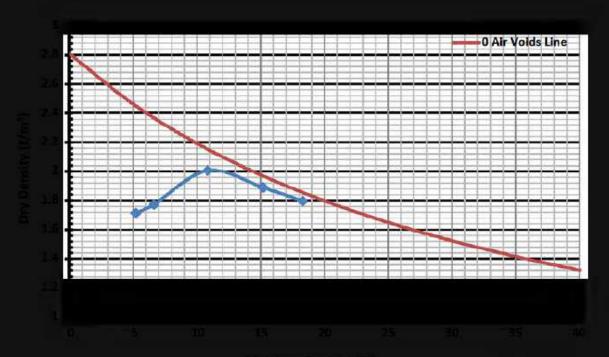
Clent Knight Piesold Date Tusted 18/04/2021

Project: Thunderbox TSE Cells C and D Labr. EPLAS

Sample No. C-TP-40 Job Number KP

Lab ID: C-TP-40 0.20 0.30 SMIDD

Depth(m): 0.20 - 0.30 Room Temperature at Test: 20°0


the clad by Phil Sample Description Tested in Mould A

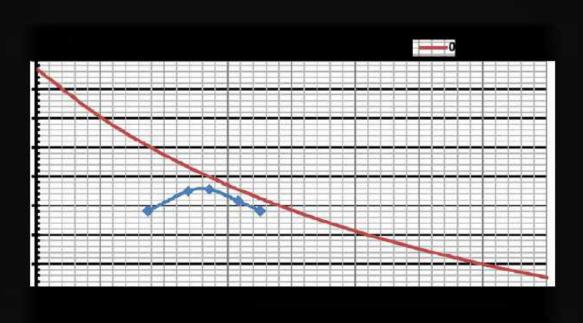
Moditure Content (%) * Wat Dengity (t/m²); -

Dry Depatty (t/m²)

Results

Maximum Size [mm]: 19.00 Maximum Dry Dansity (t/m²): 2.000
Oversize this (%): 0.00 Optimum Moisture Content (%): 11.00

Moisture Content (%)


Natur: "Portra-density: 2,805 t/m"

Stured and Insted the Sample as received

aconecomplies by the theor sagostus

The Assumption of Performed Spinor of Common Research and Personal Common Common Research (1997) And All 1997 (1997) And All 1

Test Method: AS1289.5.1.1

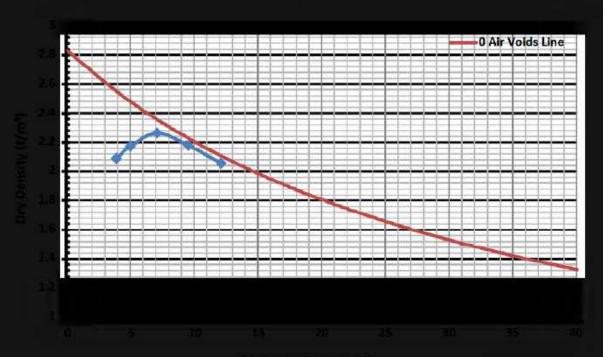
Client: Knight Piesold Date Tested: 15/04/2021

Project Thunderbox TSE Cells C and D Labr. EPLAS

Sample No. D-TP-10 Lipb Number KP

Lab (D) D-TP-10_0,20_0,30_5MDD

Depth(m): 0.20 - 0.30 Room Temperature at Test: 20°C


Chacked by Phill Sample Description: Tested in Mould /

Moisture Contact (34):
Wet Density (t/m²):
-

Dry Density (t/m²) -

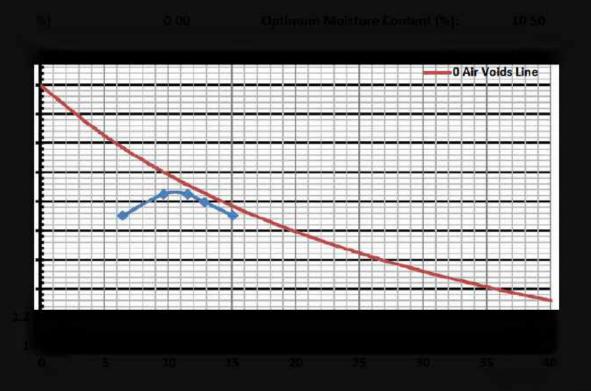
Results

Maximum Size (mm): 19.00 Maximum Dry Density (t/m²): 2.25i
Oversize dry (%) 0.70 Outlinum Moisture Content (%): 7.00

Moisture Content (%)

Nature Proper density 2.831 t/m²

Stured and Tusted the Sample as received


SHOWING WIDOURS ON THE FRHOM

Authorised Signature

The results of team each moved by any or the specific sample actions of the same by raised. Reference action for mode to ExProcessor Subsection 1 "Standard Term smill Confliction". If Proceedings also show 1. ARM 4.11 SECTION 107.

Test Method: AS1289:5.1.1

Client Knight Piesold Date Tusted 18/04/2021

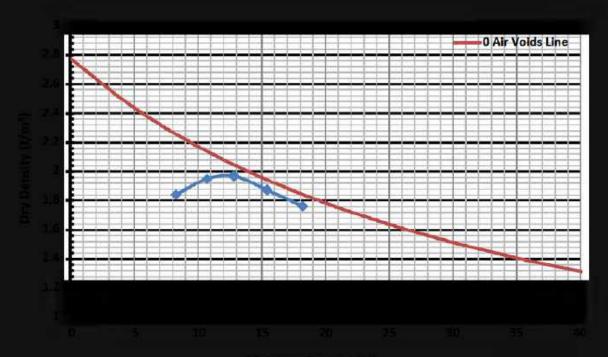
Project: Thunderbox TSE Cells C and D Lab: 685.46

Sample No: D-TP-21 Job Number KP

Lah ID: D-TF-21 0.30 0.40 SIMDO

Depth(m): 0.50 - 0.49 Room Temperature at Test: 20°0

thacked by Phil Sample Description: Tested in Mould A


Moisture Content D11 - Wat Density (t/m²): -

Dry Departy (t/m²) -

Results

Maximum See [mm]: 19.00 Maximum Dry Density (t/m²): 1.996

Oversize dry (S) 0.00 Ontimum Moisture Content (S): 12.06

Moisture Content (%)

Nature Throne Books: 2,774 t/m²

Sturned and Tested the Sample as received

corder supplied by the Clear Authorised Signs

The transfer for each standard to provide the second control of a standard and another the standard and second to the second sec

MOISTURE DENSITY RELATIONSHIP REPORT

Test Method: AS1289.5.1.1

Client: Knight Piesold

Sample No: D-TP-26

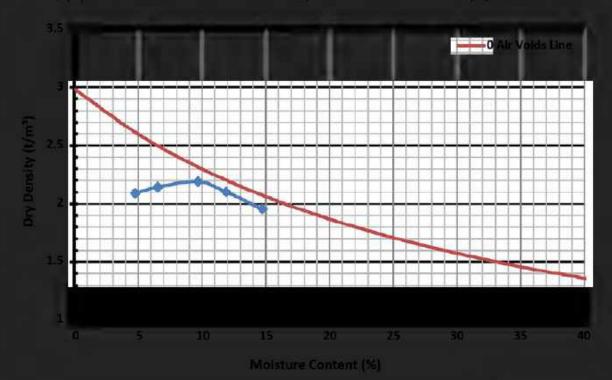
Lab ID: D-TP-26 -0.50 0.60 SMD0

Depth(m): 0.50 - 0.60

Chacked by: Phil

Moisture Content (%): -

Joo Number K


Room Temperature at Test: 20°C

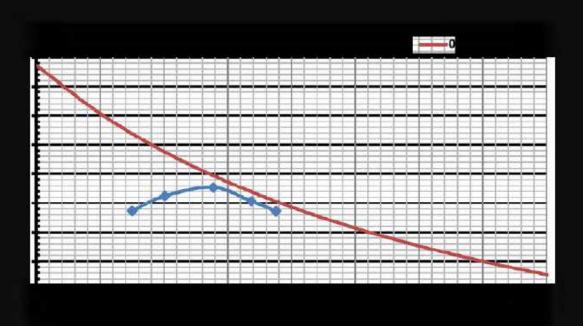
Sample Description: Tested in Mould A

Day Dometty (4/m²)-

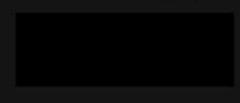
Results

Maximum Size (mm): 19.00 Maximum Dry Density (t/m²): 2.200 Oversize dry (%) 3.30 Optimum Moisture Content (%): 9.50

Notes: *Particle density 2.985 t/m³


Stored and Tested the Sample as received

Samples supplied by the Client


Authorised Signatur

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E

MOISTURE DENSITY RELATIONSHIP REPORT

Test Method: AS1289.5.1.1

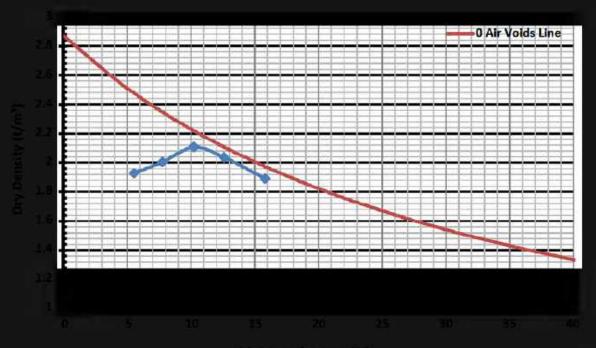
Client: Kmght Piesold Date Tested: 18/04/2021

Project Thunderbox TSF Cells C and D tab: EPLAE

Sample No: D-TP-34 Lob Number KP

Lab (D: D-TP-34_0.10_0.20_5(MDO

Depth(m): 0.10 - 0.20 Room Temperature at Test: 20°C


Stacked by Phil Sample Description: Tested in Mould A

Abisture Content (%): - Wet Density (t/m²): -

Dry Donsity (t/m²).

Results

Maximum Size (mm): 19.00 Maximum Dry Density (t/m²): 2.110
Oversize dry (%) 2.80 Optimum Moisture Content (%): 18.50

Moisture Content (%)

Mates: Thirtical density 2.869 t/m³

Stured will Tested the Sample as received

Samples supplied by the Client

Authorised Size

The visuals of tests decisioned apply only to the specific sample at time of test union, otherwise decisiy stated. References bound by made to Expression subsection (Application) 7.5 months from a sign Constitution (Application) 7.5 months (Appli

EMERSON CLASS REPORT

Test Method: AS1289.3.8.1

Client: Knight Piesold Date Tested: 25/04/2021
Project: Thunderbox TSF Cell C and D Lab: EPLAB

Test	n	 	
1861		 	1

Sample No	Sample ID	Dept	h (m)	Class Number	
1	C-TP35	0.30	0.40	8	
2	C-TP40	0.20	0.30	5	
3	C-TP46	0.40	0.50	5	
4	D-TP10	0.20	0.30	8	
5	D-TP26	0.50	0.60	5	
6	D-TP27	0.20	0.30	5	

Notes: tested using distilled water @ 19deg / test

Samples tested as supplied by client

Samples supplied by the Client Authorised Signature:

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to EPrecision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

EMERSON CLASS REPORT

Test Method: AS1289.3.8.1

Client: Knight Piesold Date Tested: 25/04/2021
Project: Thunderbox TSF Cell C and D Lab: EPLAB

Photo of Samples

Notes: tested using distilled water @ 19deg / test

Samples tested as supplied by client Samples supplied by the Client

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

Perth Unit 3, 34 Sphinx Way Bibra Lake, WA 6163 Ph: (08) 9418 8742

Mob: 0422 814 231

E-mail: Phillip.li@eprecisionlab.com

FALLING HEAD PERMEABILITY TEST REPORT

Test Method: AS1289 6.7.2

Client: Knight Piesold

19/04/2021

Project:

Thunderbox TSF Cell C and D 2021 Testing

Date Reported: EP Lab Job Number:

Date Tested:

03/05/2021 KP

Lab: Tested by: EPLAB Phil

hy: Phil

1.62 0.98	1.95	1.96	
1.62	1.95	1.96	
19.62	13.32	11.19	
1.94	2.21	2.18	
12.5	12.5	12.5	
Remolded 98% SMDD	Remolded 98% SMDD	Remolded 98% SMDD	
0.30 - 0.40	0.40 - 0.50	0.20 - 0.30	
C-TP-35	C-TP-39	C-TP-40	
C-TP-35_FH	C-TP-39_FH	C-TP-40_FH	
	C-TP-35 0.30 - 0.40 Remolded 98% SMDD 12.5 1.94	C-TP-35	C-TP-35

Notes:

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

FALLING HEAD PERMEABILITY TEST REPORT

Test Method: AS1289 6.7.2

Client: Knight Piesold Date Tested: 19/04/2021 Project: Thunderbox TSF Cell C and D 2021 Testing Date Reported: 03/05/2021 EP Lab Job Number: KP Lab: **EPLAB**

Phil Tested by:

13.33 1.87 1.00	7.09 2.21 1.00	10.57 2.03 1.00	
	State Control of State	30.000000000	
13.33	7.09	10.57	
2.12	2.37	2.25	
12.5	12.5	12.5	
Remolded 98% SMDD	Remolded 98% SMDD	Remolded 98% SMDD	
0.40 - 0.50	0.20 - 0.30	0.20 - 0.30	
D-TP-09	D-TP-10	D-TP-19	
D-TP-09_FH	D-TP-10_FH	D-TP-19_FH	
	D-TP-09 0.40 - 0.50 Remolded 98% SMDD 12.5	D-TP-09 D-TP-10 0.40 - 0.50 0.20 - 0.30 Remolded 98% SMDD SMDD 12.5 12.5	D-TP-09 D-TP-10 D-TP-19 0.40 - 0.50 0.20 - 0.30 0.20 - 0.30 Remolded 98% Remolded 98% SMDD SMDD 12.5 12.5 12.5

Notes:

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

FALLING HEAD PERMEABILITY TEST REPORT

Test Method: AS1289 6.7.2

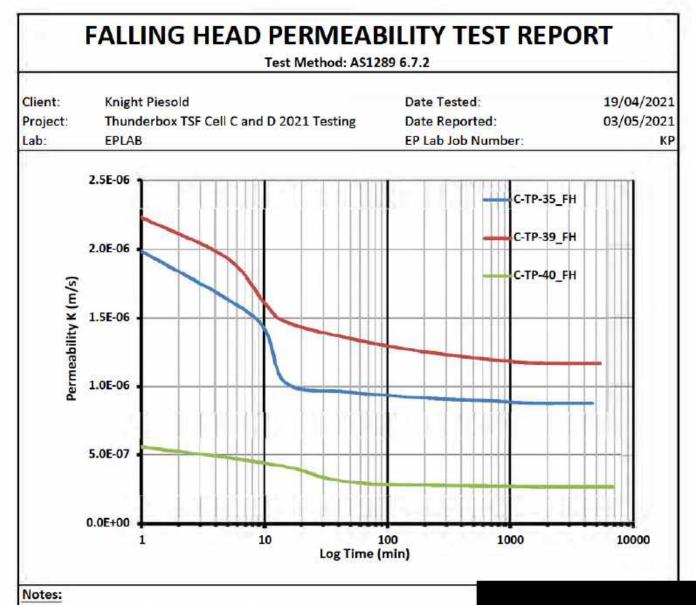
Client: Knight Piesold Date Tested: 19/04/2021
Project: Thunderbox TSF Cell C and D 2021 Testing Date Reported: 03/05/2021

Lab: EPLAB EP Lab Job Number: KP

Tested by: Phil Checked by: Phil

K ₂₀ (m/s):	0.889 E ⁻⁷	16.641 E ⁻⁷	0.969 E ⁻⁷	13.442 E ⁻⁷
Saturation (Skempton's B):	1.00	1.00	1.00	1.00
Dry Density (t/m³):	1.95	2.16	1.88	2.06
Initial Moisture Content (%):	12.16	9.73	13.43	10.38
Initial Bulk Density (t/m³):	2.19	2.37	2.13	2.27
Surcharge Pressure (kPa):	12.5	12.5	12.5	12.5
Sample Conditions:	Remolded 98% SMDD	Remolded 98% SMDD	Remolded 98% SMDD	Remolded 98% SMDD
Depth (m):	0.30 - 0.40	0.50 - 0.60	0.20 - 0.30	0.10 - 0.20
Client ID:	D-TP-21	D-TP-26	D-TP-27	D-TP-34
Lab ID:	D-TP-21_FH	D-TP-26_FH	D-TP-27_FH	D-TP-34_FH

Notes:


Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

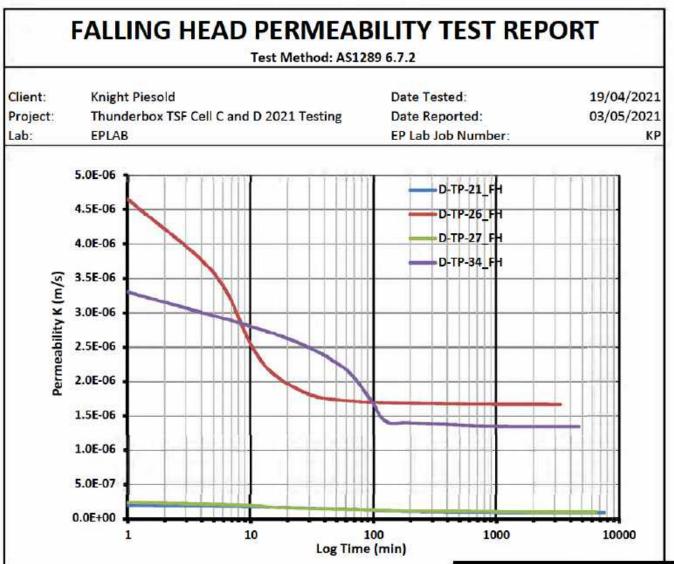
Authorised Signatory (Geotechnical Enginee

Stored and Tested the Sample as received

Samples supplied by the Client

Perth Unit 3, 34 Sphinx Way Bibra Lake, WA 6163 Ph: (08) 9418 8742 Mob: 0422 814 231

E-mail: Phillip.li@eprecisionlab.com



E-PRECISION LABORATORY

FALLING HEAD PERMEABILITY TEST REPORT Test Method: AS1289 6.7.2 Client: 19/04/2021 **Knight Piesold** Date Tested: Project: 03/05/2021 Thunderbox TSF Cell C and D 2021 Testing Date Reported: Lab: **EPLAB** EP Lab Job Number: KP 2.5E-06 D-TP-09 FH D-TP-10 FH D-TP-19 FH 2.0E-06 Permeability K (m/s) 1.5E-06 1.0E-06 5.0E-07 0.0E+00 1000 10 100 10000 Log Time (min) Notes: Stored and Tested the Sample as received Samples supplied by the Client Authorised Signatory (Geotechnical Engineer):

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431 559 578 87

Notes:

Stored and Tested the Sample as received

Samples supplied by the Client

Authorised Signatory (Geotechnical Engine

The results of tests performed apply only to the specific sample at time of test unless otherwise clearly stated. Reference should be made to E-Precision Laboratory's "Standard Terms and Conditions" E-Precision Laboratory ABN 431-559-578-87

APPENDIX D Tailings Physical Testing 2017

MEMORANDUM

To:	Saracen Metals Pty Ltd	Date:	01 August 2018
		Our Ref:	PE18-00721
		KP File Ref.:	PE801-00296/16-A dss M18006
		From:	

RE: THUNDERBOX OPERATIONS -THICKENER UNDERFLOW TAILINGS PHYSICAL TESTING

1. INTRODUCTION

Knight Piésold (KP) was engaged by Saracen Metals Pty Limited to undertake the permitting design of Stage 7 to 9 of the Tailings Storage Facility (TSF) expansion at the Thunderbox project in the Goldfields region of Western Australia. As mining progressed to a different ore body, an operating sample was requested to validate the design assumptions by testing the physical and geochemical properties.

The physical tests were performed to determine the rate of settling, achieved density and rate of water release of the tailings. In addition, air drying, permeability and consolidation tests were performed. Geochemical test results will be provided in a separate memorandum.

2. SAMPLE DESCRIPTION AND TESTWORK

A ~20L bucket of slurry tailings sample from the thickener underflow was sent to the KP laboratory in Perth in July 2018. The percent solids for this tailings sample was tested and found to be 51% solids w/w in the as received condition. Adjustment to the percent solids was made to reflect a target percent solids of 58% w/w and a full sweep of physical testing was carried out.

The following tests were carried out on the sample:

- I. Classification tests to determine:
 - Particle size distribution of the tailings;
 - Supernatant liquor density and pH;
 - Tailings solids particle density;
 - Atterberg Limits of the tailings solids;
- II. Undrained and drained sedimentation tests:
- III. Air drying tests;
- IV. Permeability tests; and
- V. Consolidation tests.

During laboratory testing it is Knight Piésold's normal practice to duplicate each test as a means to verify the consistency of the test results. The results of each individual test are plotted on the corresponding figures. The interpreted mean values are given in the

tables and text of the document. A brief description of the method employed in each test is also provided.

3. PHYSICAL TESTING

The following section presents the physical testing results for the tailings sample received. Predicted tailings behaviour is discussed in Section 4, however, it should be noted that tailings behaviour in the field is also dependent on the layout, height and design of the storage facility, climatic conditions on site and the operating parameters of the processing plant. Hence it is recommended site monitoring is conducted to enable a full assessment of the performance of the facility.

3.1 CLASSIFICATION TESTING

Classification testing for the sample was completed by Trilab in Perth. Where appropriate, classification tests were conducted in accordance with relevant Australian Standards. The results of the classification tests and relevant Australian Standards are summarised in Table 3.1. The Trilab laboratory test reports are presented in Appendix A.

Table 3.1: Classification testing – results and relevant standards

Test	July 2018 Operating Sample	AS1289
Solids Particle Density (t/m³)	2.77	3.5.1
Supernatant Density (t/m³)	1.004	(hydrometer)
Supernatant pH	10.4	(pH meter)
Liquid Limit (%)	32	3.1.2
Plastic Limit (%)	26	3.2.1
Plasticity Index (%)	6	3.3.1
Linear Shrinkage (%)	2.0	3.4.1

The particle size analysis for the tailings sample was completed in accordance with AS1289 3.6.3 and 3.5.1. The measured particle size distribution is presented in Table 3.2 and the grading curve for the sample is shown on Figure 3.1.

Table 3.2: Particle size distribution - Thickener Underflow Sample

Fraction	Particle Size (µm)	Percent Passing (%)
Canal	600	100
Sand	200	97
	75	78
Silt	20	54
	6	18
Clay	2	4

The Thickener underflow sample consisted of 22% sand, 74% silt and 4% clay sized material. The testing indicates that the material is Silt with sand and trace clay and would be classified as ML with low plasticity according to Geotechnical Site Investigation Standard AS1726-2017. The sample's P₈₀ is approximately 83 µm.

The grading curve indicates that part of the sample falls inside the boundary of potentially liquefiable soil and therefore liquefaction of tailings should be considered in design.

3.2 SEDIMENTATION TESTING

Drained and undrained sedimentation tests were carried out to determine the settling rate, volume of supernatant, and settled dry density of the tailings.

In the undrained sedimentation test, tailings slurry is allowed to settle in a measuring cylinder. This is equivalent to the deposition of tailings under water. The results indicate the expected rate and quantity of supernatant release and enable the minimum expected dry density of the tailings to be determined.

In the drained sedimentation test, tailings slurry is allowed to settle and drain in a cylinder with a fine sand filter drain at the base. This simulates the deposition of tailings where both settling and free drainage can occur. The results indicate the relative quantities of supernatant and underdrainage released by the settling slurry and enables the dry density of the drained tailings to be determined. The underdrainage values are maximum values, as the drainage layer is free-draining without back pressure and the tailings is deposited directly over the drainage medium.

The results of the sedimentation tests are presented in figures 3.2 and 3.3. Table 3.3 presents a summary of the measured sedimentation data.

Sample	Test	Initial Solids (%)	Supernatant (% of initial water volume)	Underdrainage (% of initial water volume)	Time to Achieve Final Density (Days)	Final Dry Density (t/m³)	Final Void Ratio	Figure
Thickener	Undrained	57	37	-	0.3	1.21	1.28	3.2
Jnderflow sample	Drained	59	29	18	1.0	1.35	1.05	3.3

Table 3.3: Sedimentation test results.

The undrained test indicated that the Thickener Underflow Sample is quick settling taking about one third of a day to complete the majority of the settlement and water release. There is approximately a 12% increase in the settled density with drainage.

The sample released approximately 37% of water in slurry to supernatant in the undrained test, reducing to 29% in the drained test. The sample achieved high dry densities from settlement before air drying or consolidation.

3.3 AIR DRYING TESTS

Air drying tests were carried out on slurry samples to determine the effect of natural drying of the tailings after initial settling and removal of supernatant liquor, thereby simulating conditions expected following sub-aerial deposition. Continuous monitoring of the weight and volume of each specimen was carried out in order to quantify the relationship between dry density, moisture content, volumetric change and the degree of saturation of the tailings against a measured evaporation rate.

A direct relationship exists between dry density and moisture content up to a breakaway point, at which the degree of saturation falls below 100%. At this point, negative pore water pressures are developed, which further consolidates the tailings. Drying below a limiting saturation produces no further consolidation, and the density at this point represents the maximum that can be achieved via air drying of the tailings. The results of air drying test are presented in figures 3.4 and 3.5 and are summarised in Table 3.4.

Table 3.4: Results of air drying tests

Sample	Moisture Content at Breakaway Point	Dry Density at Breakaway Point	Limiting Saturation Value	Final Dry Density	Figures
	(%MC)	(t/m³)	(%Sat)	(t/m³)	
Thickener Underflow	35	1.45	75	1.54	3.4, 3.5

The sample achieved a final dry density of 1.54 t/m^3 after around 3-4 days of air drying at an evaporation rate of about 8.8 mm/day (total evaporation of about 25 to 35 mm). There is 14% improvement in density over the drained results with the void ratio reducing to around 0.8.

3.4 CONSOLIDATION TEST

The consolidation of the tailings can be quantified in terms of the compression index $C_{\rm C}$ and the coefficient of consolidation $C_{\rm V}$. The compression index relates the void ratio or tailings density to the effective stress of the tailings sample. The larger the value of $C_{\rm C}$, the more compressible the tailings is. The coefficient of consolidation defines the rate of excess pore water dissipation, and hence the rate of increase in effective stress within the tailings. Higher values of $C_{\rm V}$ indicate more rapid consolidation of the sample.

The settlement with respect to time for the test is presented in Figure 3.6 and the results of the consolidation tests are summarised in Table 3.5.

Table 3.5: Consolidation test results

Test	Dry Density	Stress Range	Coeff. of Consolidation	Coeff. of Volume Decrease	Comp. Index
	(t/m³)	(kPa)	C _v (m²/y)	M _v (m ² /kN)	Cc
Thickener Underflow	1.17-1.24	1.78-4.92	139	0.016	0.270

These results indicate the tailings sample is highly compressible overall and will consolidate very quickly under the self-weight of additional deposition.

3.5 PERMEABILITY TEST

Falling head permeability tests were completed on saturated tailings samples with drainage through the drained sedimentation sample being measured. In addition, permeability values were derived from the results of consolidation tests. Measured permeability data are summarised in Table 3.6.

Table 3.6:	Permeability	test results
------------	--------------	--------------

Sample	Test Type	Dry Density (t/m³)	Permeability (m/s)
Thickener Underflow	Falling Hand Task	1.35	5.9 x 10 ⁻⁷
	Falling Head Test	1.36	5.7 x 10 ⁻⁷
		1.19	8.8 x 10 ⁻⁶
	Consolidation Test	1.22	1.4 x 10 ⁻⁶
		1.24	7.1x 10 ⁻⁷

These results represent the vertical permeability of saturated tailings prior to additional consolidation due to additional deposition loading or negative suction due to air-drying. In the range of expected settled densities, the vertical permeability of the Thickener Underflow sample is approximately 6 x 10⁻⁷ m/s. As the tailings consolidate, it is anticipated that the permeability may reduce by about another order of magnitude.

4. INTERPRETATION OF RESULTS

Based on the physical testing of the samples the behaviour of the tailings can be predicted. The testing has been undertaken at 58% solids which is in the design range for the current operation.

4.1 WATER PRODUCTION

The release of water following deposition of the tailings can be estimated from the results of undrained and drained sedimentation test. The rate of release will determine the amount of liquor available in the decant pond for collection and return to the process plant or release from the facility. The testing indicated that the rate of supernatant release is moderately fast, taking within one day to complete.

The expected supernatant release would be in the range of 29 to 37% of the water in slurry, not accounting for rainfall and evaporation but incorporating the loss of water to re-saturate lower tailings layers for the operating tailings. Allowing for evaporation and seepage losses, a nominal decant recovery of 24 to 32% is considered possible which is consistent with the 30% recovery value used in the design. The underdrainage flow is expected to be around 18% of the water in slurry. Underdrainage recovery rates will be lower due to design issues and operating constraints. A recovery rate of between 5 and 12% is expected for a full basin underdrainage system. Values should be compared to existing recorded decant return rates for verification.

4.2 TAILINGS DENSITY

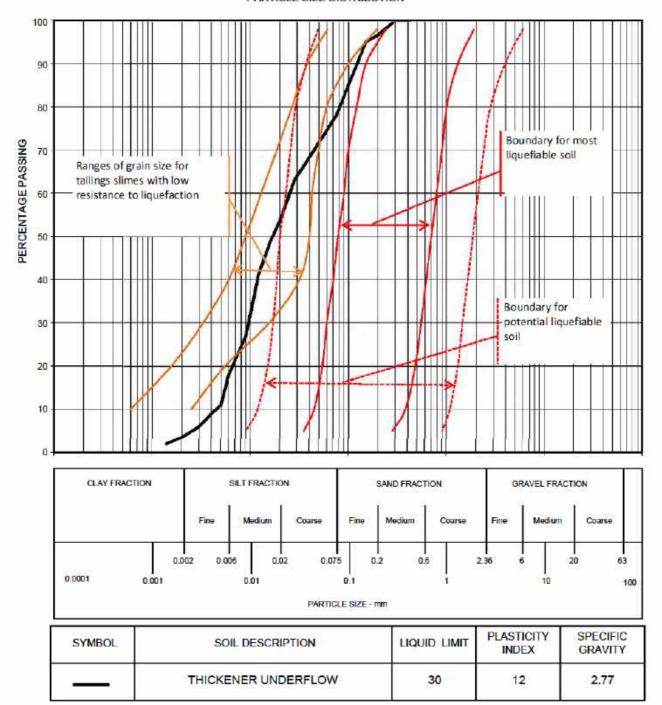
The settled dry density of tailings deposited into the facility can be predicted from laboratory testing and an appropriate site water balance taking into account climatic conditions. The test results indicated that the tailings sample achieved high densities, around 1.35 t/m3 (void ratio around 1.05) from settling alone. There was an additional improvement due to air drying and potential consolidation with the air dry density reaching a maximum of 1.54 t/m3 (void ratio of 0.7 – 0.8).

It has been observed over a number of years that densities achieved in the field are generally lower that those obtained in the laboratory. The in-situ density is estimated to be approximately 1.21 to 1.35 t/m3. This is approximately equivalent to the undrained to drained settlement value and indicates that the current facility is smaller than the area required to achieve full air-dried density for the given throughput. This is currently

around 60 Ha divided by 3.0 Mtpa, equal to 20 Ha/Mtpa, where typically a value of 25 - 30 Ha/Mtpa is recommended.

4.3 COMPARISON WITH PREVIOUS TESTWORK

In comparing the previous testwork, the following are noted:


- The current sample settled more rapidly than the previous sample, taking one third of a day to complete the majority of the settling and supernatant release (the previous test sample took a day).
- The current samples achieved a final dry density of 1.54 t/m³, that is a 5% reduction in dry density compared to the previous testwork (1.62 t/m³).
- A detailed density model has been completed as part of the Stage 7 to 9 final design. The impact on the void storage reduction due to the lower dry density (current testing) ranges from 1 week for South void and 3 to 4 weeks for the North void (based on a 3 Mtpa production rate).

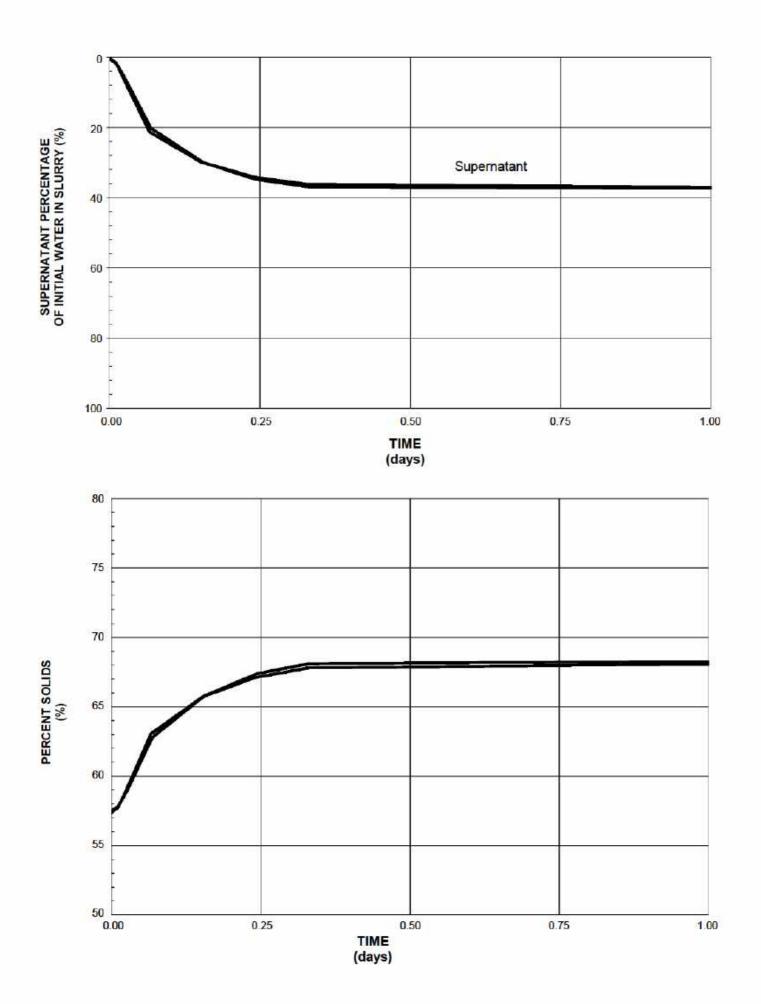
We trust this is sufficient information for your current requirements, however please contact us if you have any questions.

PARTICLE SIZE DISTRIBUTION

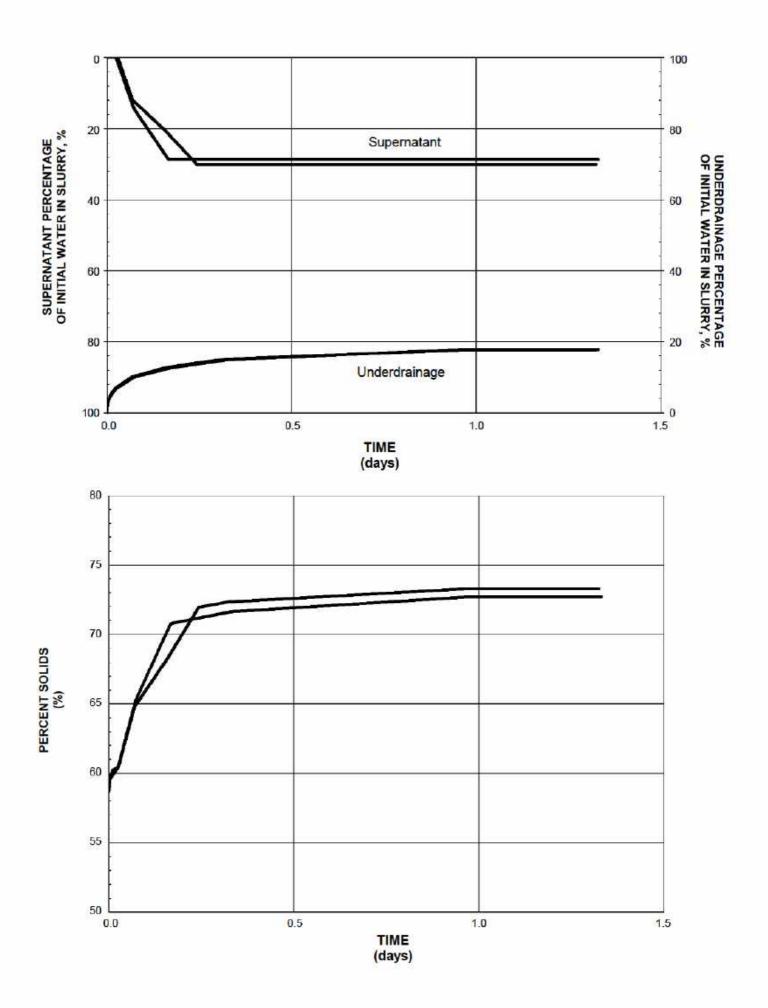
Line 1

Line 2

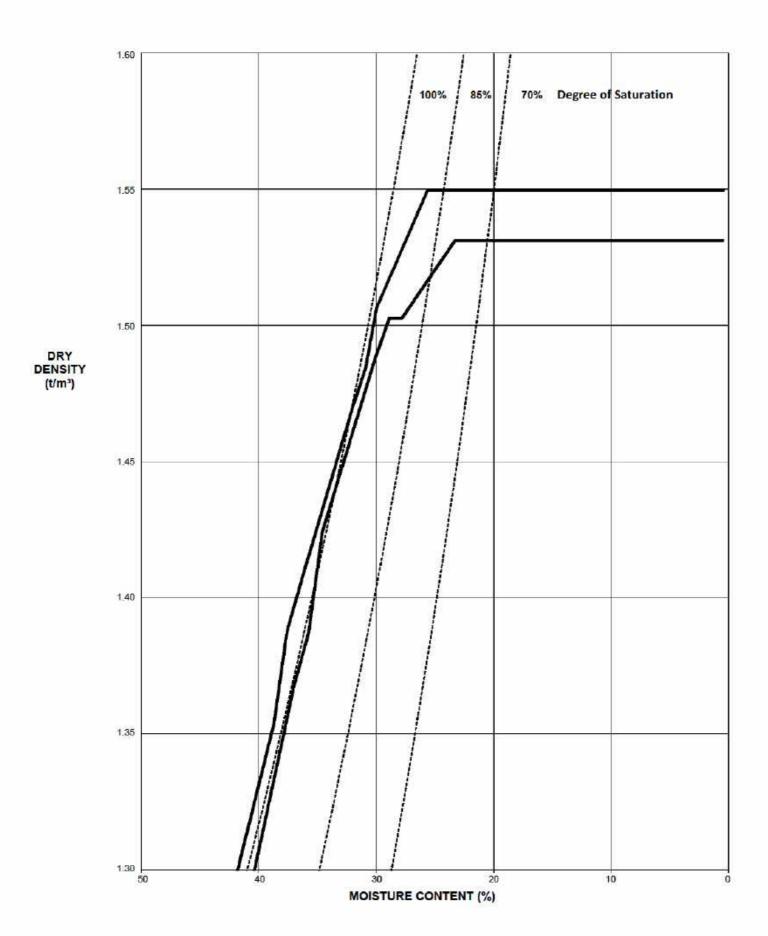
Note:

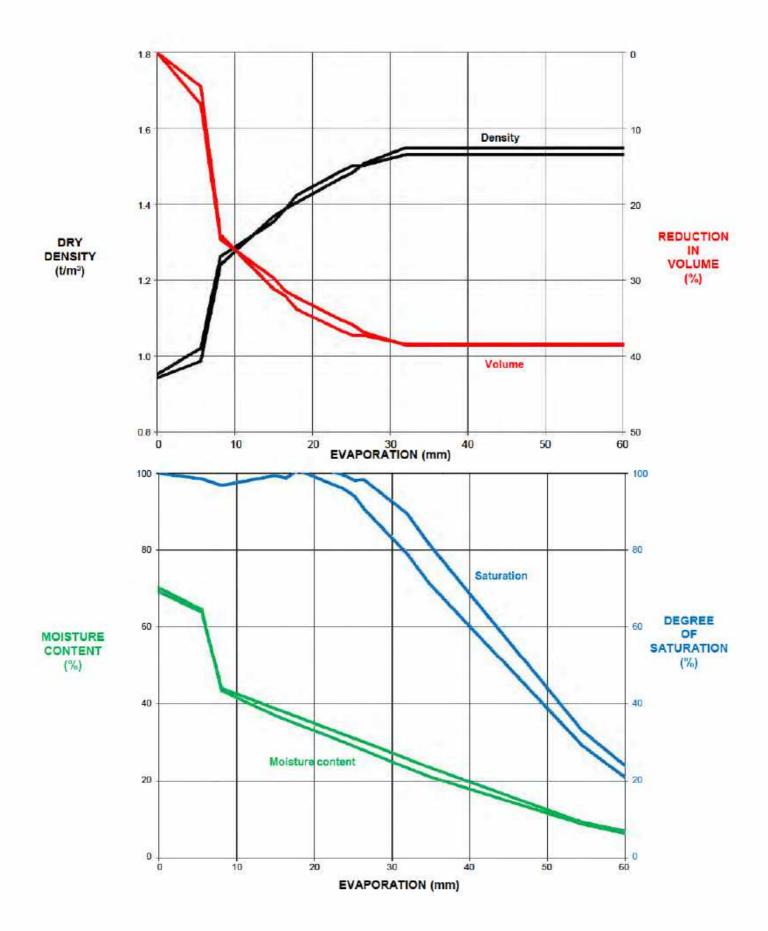

Liquefiable and potentially liquefiable soil limits suggested by USNRC 1985.

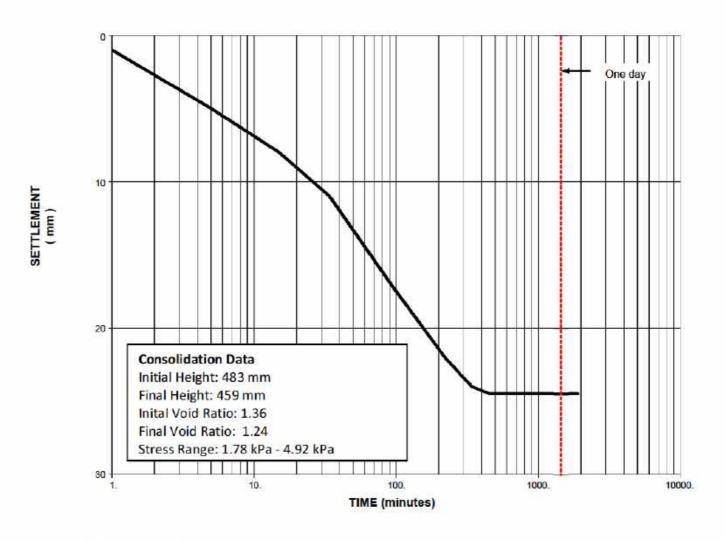
Data obtained from Figure 12.15 and 12.16 of Geotechnical Engineering of Dams, Fell 2005

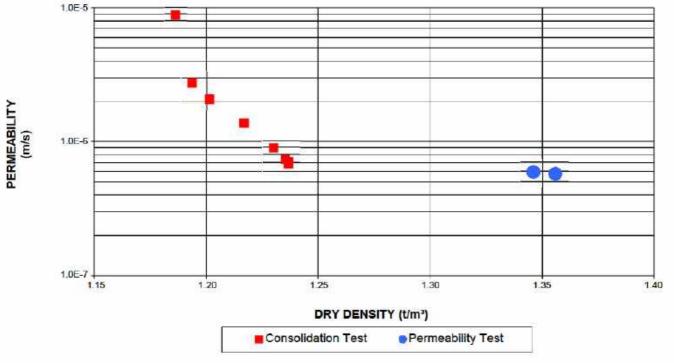

Line 5

Line 6



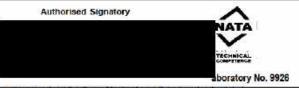






APPENDIX A

Trilab Results


Brisbane 346A Bilsen Road, Geebung QLD 4034 Ph: +61 7 3265 5656 Perth 2 Kimmer Piace, Queens Park WA 6107 Ph: +61 8 9258 8323

Client Address	Test Method: AS 1289 3.6.3. 3.5.1 Knight Piesold Pty Ltd Level 1 184 Adelaide Terrace, EAST PERTH WA 6004			Report No.		P 18070032-G					
Project	PE801-296	Thunde	rbox					Test Date	1	6/07/20	018
								Report D	ate	16/07/2	2018
Client ID	Thickener U	Inderflov	и - Samp	e Thund	lerbox (perat	ions	Depth ((m)	Not Supplie	ed
Sieve Size	Passing		- 5								
(mm)	%		100								
150.0									/		
75.0			90			1			/		
53.0			52.00								
37.5									/		
26.5			80 -						/		
19.0											
9.5			70 -								
4.75			(18)E								
2.36											
1.18			60								
0.600		8						/			
0.425		Passing (%)	15364					•			
0.300	100	Pass	50 -								
0.150	95										
0.075	78		40								
0.054	73						/				
0.039	68						/				
0.028	63		30 -	_			\wedge				
0.021	56					/					
0.016	49					/					
0.012	41		20 -								
0.009	27										
0.006	18		10 -								
0.005	11			100							
0.004	9		_	_	X.						
0.003	6		0.001			94	0.01		0.1		
0.003	5					50		le Size (mm)			
0.002	4						raide	Sice (man)			
0.001	2										

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Perth Laboratory

James:

Billibarie 345A Eviten Food, Gritting GLD 4034 Per ettl 7, 1005 Sept. Peirin 2 Kimmer Pläce Guilleria Palik WA (1987) Dec 2011 (1984) arbes

ATTERBERG LIMITS TEST REPORT

Report Date Planticity Index (

TABLE STATE OF THE TABLE OF THE PARKET OF THE STATE OF TH

ment and the tests political are conflict to assumptions included in

this document are traceable to Australian/National Standards

Tested iil Tellab Potth Laboratory

Authorised Seginatory

Laboratory No. 5925

APPENDIX E TSF Expansion Seepage Assessment

APPENDIX E -SEEPAGE MODELLING

E.1 GENERAL

A seepage modelling has been carried out to estimate the phreatic surfaces and evaluate the seepage into the TSF embankment and foundation, for a steady state condition.

Transient modelling requires time dependent inputs, including the detailed schedules of construction and tailings depositions etc. to predict the phreatic surface changes with the construction and deposition activities. At this stage, the detailed schedules have not be confirmed, the transient modelling will thus be carried out in a later stage after confirmation of these schedules.

E.2 EMBANKMENT GEOMETRY

The assumptions made in the modelling are as follows:

- The TSF embankment is a reasonably homogeneous earth fill dam constructed of Zone A low-permeability fill.
- The basin preparation consists of:
 - natural ground area soil lined, and
 - partial basin treatment and underdrainage installed.

Stage 1 and Stage 2 will be constructed using a downstream method with a 1V:2H upstream embankment slope and 1V:2.75H downstream embankment slope. Stages 3 to 6 will be raised using upstream techniques on compacted tailings. The total embankment height is approximately 22 m at Stage 6. The typical cross section is shown in Drawing No 801-296-D3000-302 and the crest level at each stage is indicated on Drawing No 801-296-D3000-301.

The pond is assumed to be 300 m away from the embankment. The seepage models for Stage 1 and Stage 6 are shown in figures E.1 and E.2, respectively.

E.3 GROUND CONDITIONS

The subsurface conditions and layer thickness in the foundation materials are based on the materials identified in the site investigations. The ground subsurface profile comprise:

- Top Soil Layer –Sandy Clay with an average thickness of 1 m.
- Laterite clayey gravels with an average thickness of 3.5 m.

- Residual Soil (XW BIF/Sandstone recovered as silty clay with an average thickness of 12 m.
- BIF (Distinctly weathered).

The natural groundwater table was assumed at a depth of approximate 27 m below natural ground surface (BGS) based on 2021 site investigation.

E.4 MATERIAL PARAMETERS

The parameters adopted for seepage modelling are summarised in Table E.1 based on the geotechnical investigation (Ref. E2). Reduced hydraulic conductivities were used for partially saturated materials as air trapped in the pore spaces would impede the flow.

Table E.1: Adopted Permeability for Seepage modelling

Material Type	Permeability (m/s)
Zone A	1.0 x 10 ⁻⁰⁸
Zone C	5.0 x 10 ⁻⁰⁶
Sandy clay (Top Soil)	1.0 x 10 ⁻⁰⁷
Laterite (Ferricrete)	5.0 x 10 ⁻⁰⁷
Sandy Silt/Sandy Clay (Residual Soil, XW BIF/Metasediment Rock)	1.0 x 10 ⁻⁰⁸
BIF	6.0 x 10 ⁻⁰⁸
Tailings	8.0 x 10 ⁻⁰⁸

The horizontal hydraulic conductivity values (kh) used in the analyses for the proposed embankment fills and in-situ soils are based on field logging and laboratory tests as well as typical hydraulic conductivities of similar soils.

E.5 CASES MODELLED

To assess the basin drains and embankment toe drain impact on the phreatic surfaces, the following two cases were modelled:

- Design Case (all drainage operational).
- Embankment drainage and basin drainage not operational.

E.6 RESULTS

The seepage flux through the basin is summarised in Table E.2 and the phreatic surfaces within the facility are graphically shown in figures E.3 to E.5.

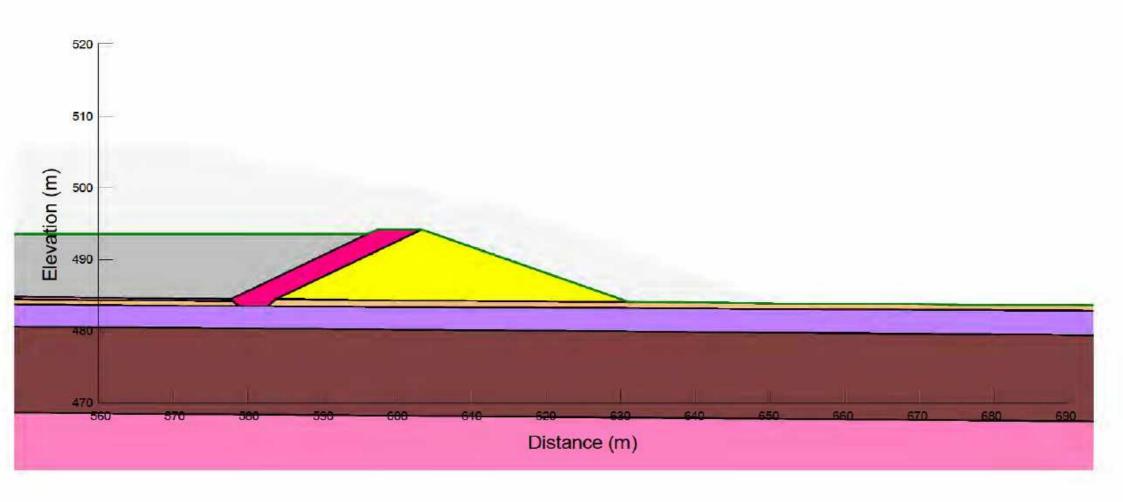
Table I	E.2:	Seepage	through	basin

Stage	Cases	Flux (Liter/Ha/day)	
Ct 4	Drains operational	1.6	
Stage 1	Drains not operational		
Ctomo C	Drains operational	2.0	
Stage 6	Drains not operational		

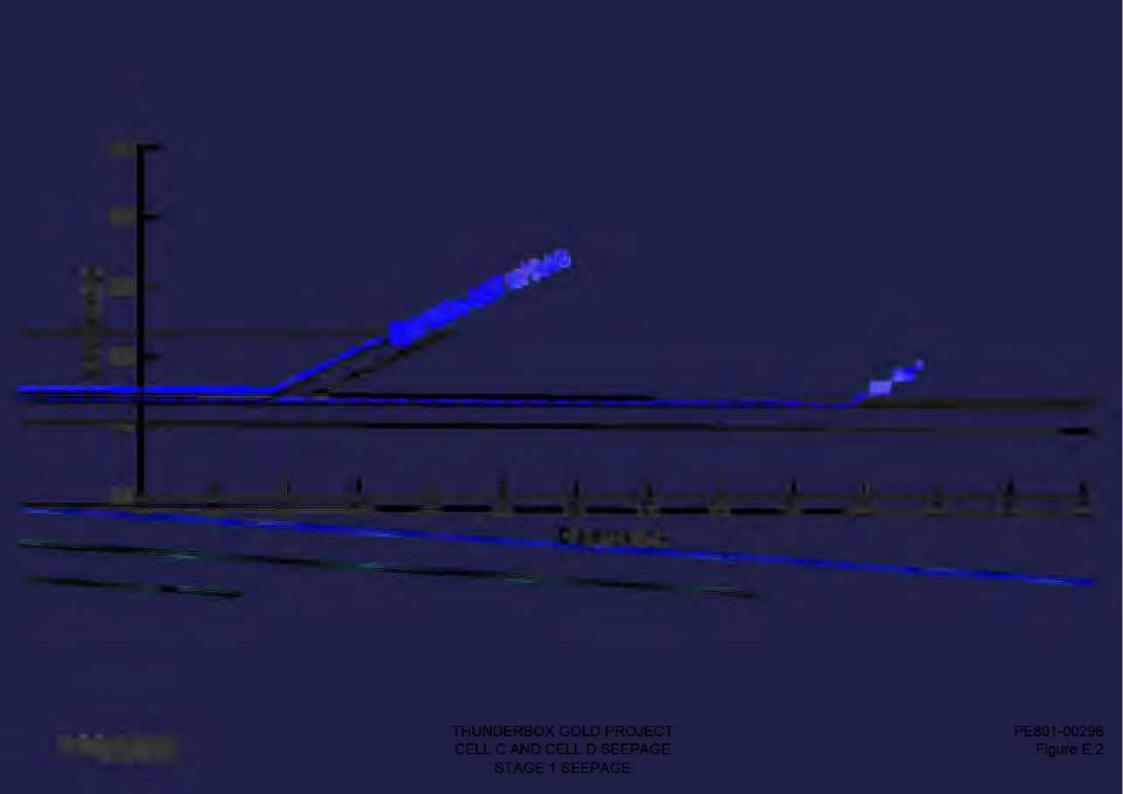
As the ground water is 27 m below the existing ground surface, and the pond is ~ 300 m away from the embankment, the modelling results indicates that there will be no seepage through the embankment.

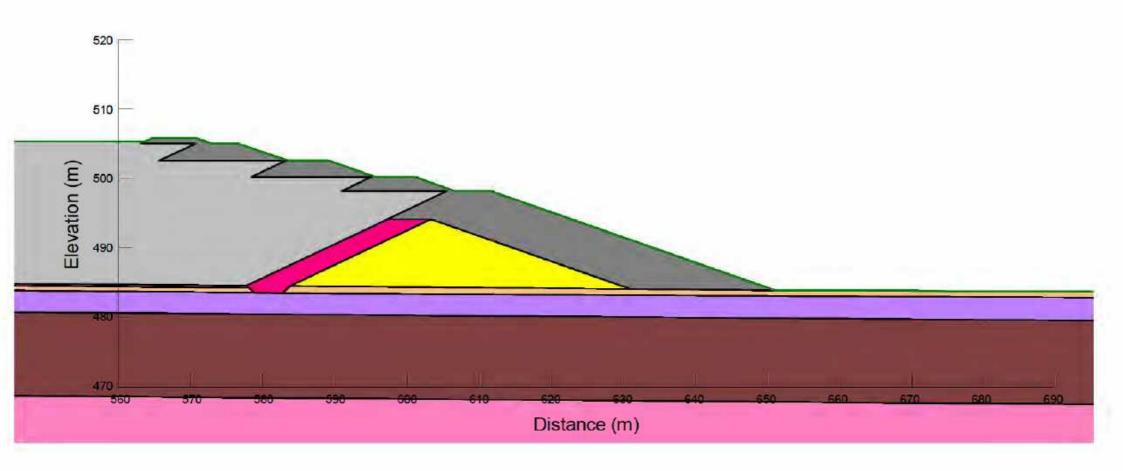
In the steady state condition, the effectiveness of the basin and toe drains appear not to have significant impact on the phreatic levels and seepage to the embankment due to the low ground water table and pond being far away from the embankment. However, these drains will be effective to lower the phreatic levels in the tailings during operation. This can be assessed after geotechnical investigation including CPT tests have been carried out in the deposited tailings at various stages.

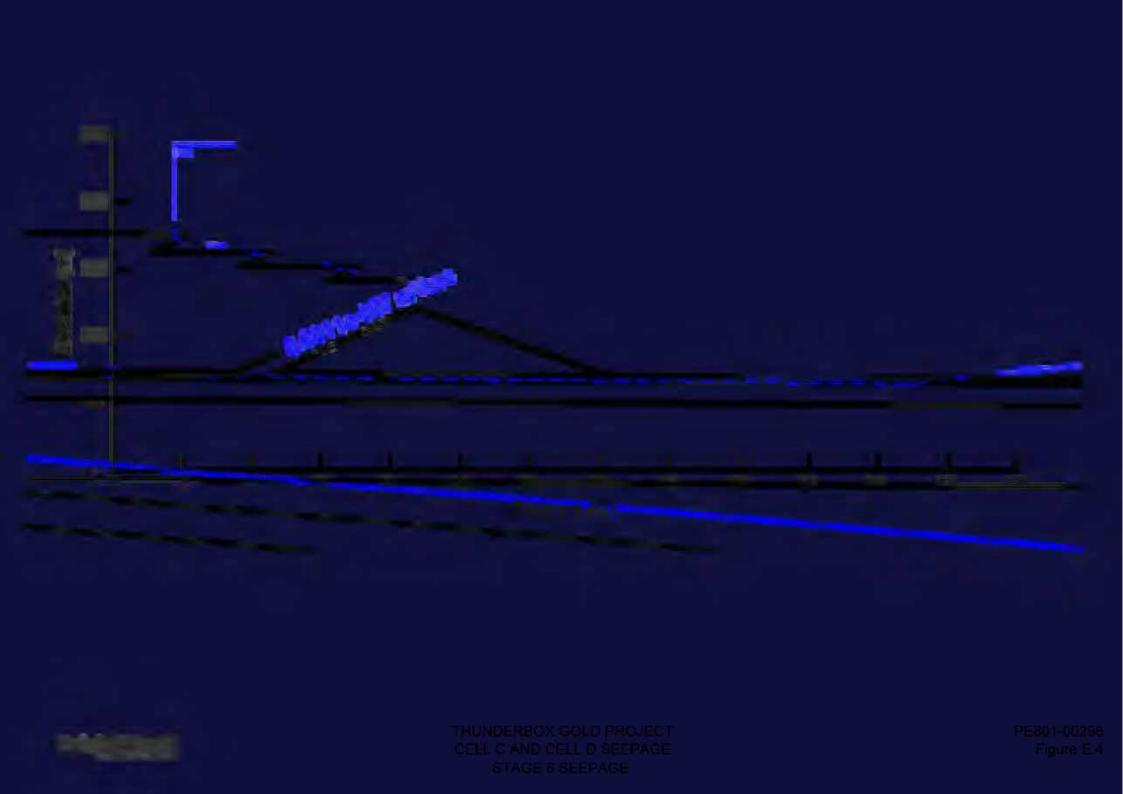
E.7 SUMMARY


Based on the seepage modelling for the steady state condition, the estimated phreatic surfaces will be under the embankment, and there will be very little seepage into the embankment. It is recommended to carry out the following further work:

- Transient modelling to estimate the phreatic levels during operation after confirmation of the detailed schedules of construction and tailings deposition.
- Geotechnical investigation including CPT tests to confirm the following:
 - Properties of the constructed embankment.
 - Tailings properties.
 - Phreatic levels.
- Update of this seepage analysis after the geotechnical investigation.


E.8 REFERENCES


- E1. GEO-SLOPE International Ltd., "SEEP/W", 2007.
- Knight Piésold Pty Ltd., TSF CELL C SITE GEOTECHNICAL INVESTIGATION, PE20-01642, December 2020.



APPENDIX F TSF Expansion Stability Assessment

APPENDIX F STABILITY ASSESSMENT

F.1 INTRODUCTION

The stability assessment of the Tailings Storage Facility (TSF) was undertaken according to ANCOLD guidelines (Ref. F1) which recommends that the evaluation of stability be performed using long-term, short-term and post-seismic loading conditions. The recommended minimum factors of safety are summarized in Table F.1.

Table F.1: Recommended Minimum Factors of Safety

Loading Condition	Minimum FOS
Long-term drained	1.5
Short-term undrained (potential loss of containment)	1.5
Short-term undrained (no potential loss of containment)	1.3
Post-seismic	1.0 – 1.2

A limit equilibrium programme developed by GEO-SLOPE International Ltd "SLOPE/W" (Ref. F2) was used for the stability analysis. SLOPE/W calculates the magnitude of the mobilising forces in the embankment slope and compares them to the resisting forces which are a function of the shear strength of the soil structure. The ratio of the resisting to the mobilising forces is the factor of safety. When the destabilising forces are equal to the strength of the structure this ratio (the factor of safety) is equal to one and the embankment is said to be "just stable". As the factor of safety increases, the probability of an embankment failure is reduced.

F.2 MODELLING PARAMETERS

The ground subsurface profile is the same as that presented in Appendix F. The index and shear strength properties for the sub-surface materials beneath the TSF are based on materials identified in the site investigation (Ref. F3) and typical values for similar materials published in literature. The model geometry is the same as for seepage analysis. Figures F.1 and F.6 shows the models for Stage 1 and Stage 6 embankment configurations respectively. The shear strength parameters of materials assumed for the long-term, short-term, and post-seismic assessments are listed in tables F.2 to F.5.

Table F.2: Assumed Static	Shear Strength P	arameters (Lone	g-Term Condition)

Material	γ _{moist} (kN/m³)	c' (kPa)	φ (deg)
Tailings	16	0	32
Zone A	19	5	28
Zone C	19	5	28
Sandy clay (Top Soil)	19	5	28
Laterite (Ferricrete)	21	5	30
Sandy Silt/Sandy Clay (Residual Soil, XW BIF/Metasediment Rock)	20	20	25
BIF	23	100	35

Table F.3: Assumed Undrained Shear Strength Parameters (Short-Term Condition)

Material	γ _{moist} (kN/m³)	Tau/Sigma ratio	Minimum shear strength (kPa)	
Tailings	16	0.25	0	
Sandy Silt/Sandy Clay (Residual Soil, XW BIF/Metasediment Rock)	20	0.3	80	

Table F.4: Assumed Post-Seismic Undrained Shear Strength Parameters

Material	γ _{moist} (kN/m³)	Tau/Sigma ratio	Minimum shear strength (kPa)	
Tailings	16	0.05	0	
Sandy Silt/Sandy Clay (Residual Soil, XW BIF/Metasediment Rock)	20	0.24	64	

The materials in Zone A and C are assumed to be compacted to 95% SMDD which will be in a medium dense and stiff consistency with dilative behaviour, the undrained shear strengths would be higher than the drained strengths. In this analysis, the undrained shear strengths are limited to the drained strengths. Similarly, the foundation materials Laterite (Ferricrete), and BIF are cemented with very dense and stiff consistency, the undrained strengths are capped at the drained strengths.

F.3 CASES MODELLED

The seepage modelling results indicate that the phreatic surface in a steady state condition will be below the embankment base due to low ground water table and the pond being far away from the embankment. During the operation the perched water

level could be higher than that in a steady state condition. Based on the CPT testing in cells A and B, the phreatic surfaces within the tailings would be slightly higher than the original ground level. The stability under this condition was also examined based on a conservative assumption that the phreatic surface at Stage 6 in cell C and D will be the same as that at Stage 9 in cells A and B.

Two cases were analysed for Stage 6 (the final Stage) are as follows:

- Case 1- Phreatic Surface based on Seepage modelling for the steady state condition.
- Case 2- Phreatic Surface at Stage 6 in cells C and D being the same as that at Stage 9 of cells A and B.

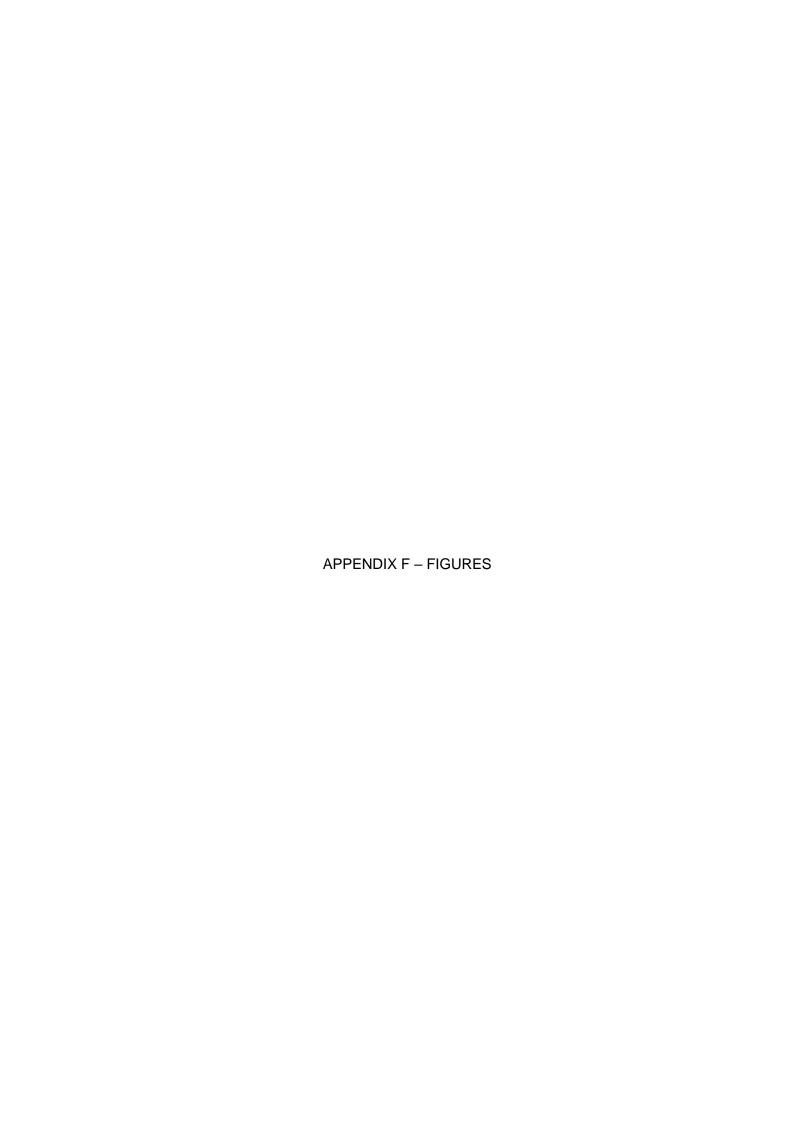
F.4 MODELLING RESULTS

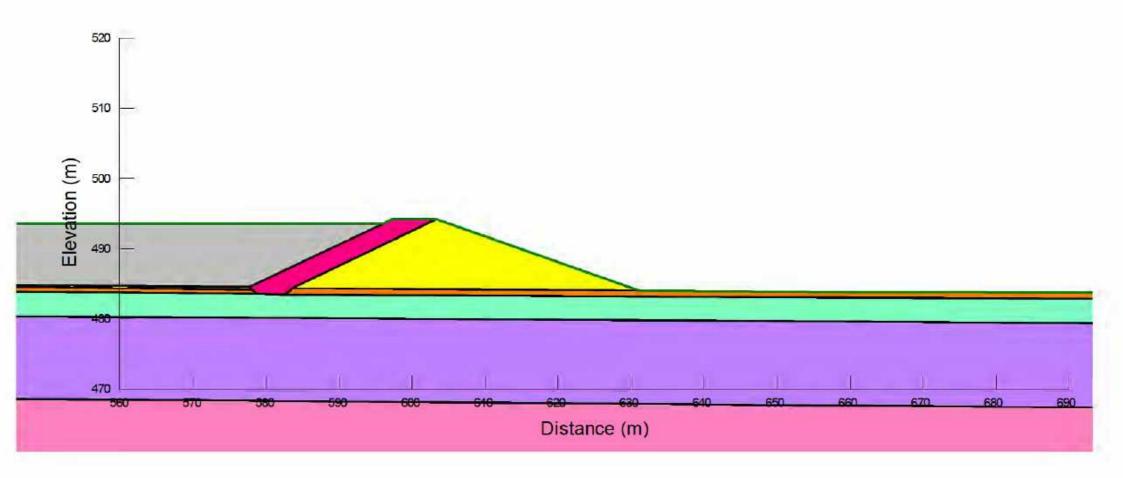
The results of stability analyses are summarized in Table F.5 and graphically shown in figures F.2 to F.14.

Table F.5: Summary of TSF Embankment Stability Analysis Results

Stage	Loading Condition	Factor of Safety		
		Case 1	Case 2	
	Long-term (drained)	1.9	93	
Stage 1	Short-term undrained (potential loss of containment)	1.9	93	
	Short-term undrained (no potential loss of containment)	1.93		
	Post-seismic	1.93		
	Long-term (drained)	2.20	2.09	
Stage 6 (Final Stage)	Short-term undrained (potential loss of containment)	1.96	1.73	
	Short-term undrained (no potential loss of containment)	1.97	1.73	
3	Post-seismic	1.73 1.48		

The analysis results indicate that the designed TSF embankments from Stage 1 to the final stage (Stage 6) have adequate factors of safety according to ANCOLD guidelines.

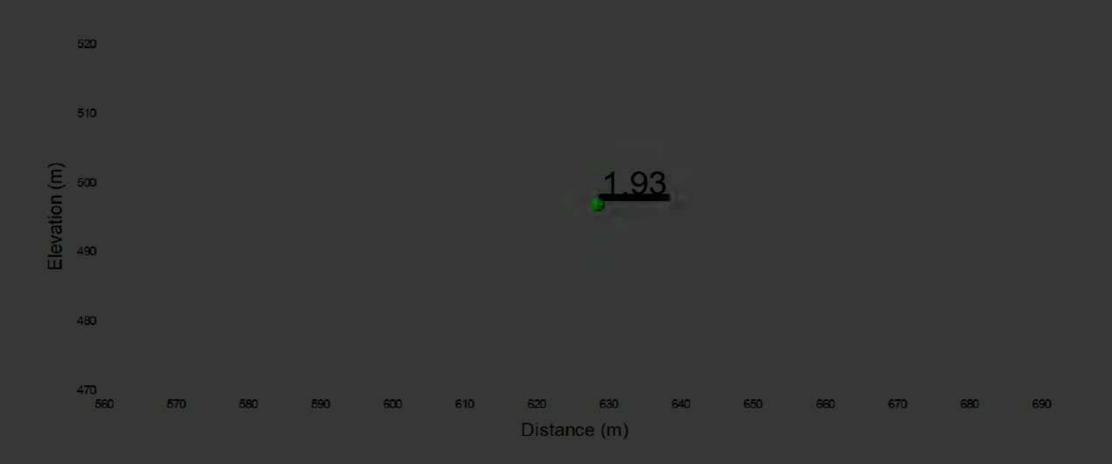

F.5 CONCLUSIONS AND RECOMMENDATIONS


Based on available information and assumptions, the slope stability analysis results indicate that the embankment will have satisfactory factors of safety as per ANCOLD guidelines. It is recommended to carry out the following further work:

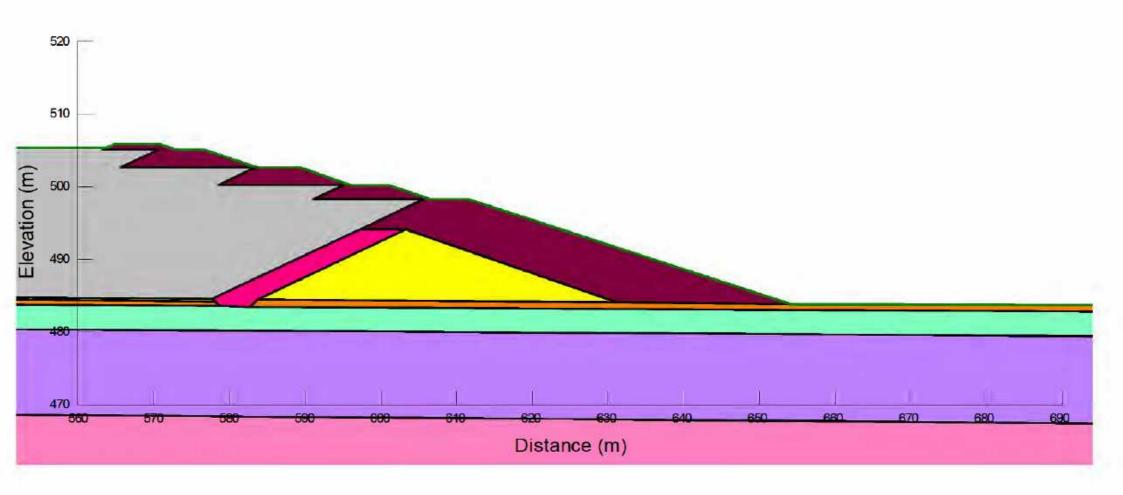
- Geotechnical investigation including CPT tests to confirm the following:
 - Properties of the constructed embankment.
 - Tailings properties.
 - Phreatic levels.
- Update of this analysis after the geotechnical investigation.
- Update the TSF design based on the investigation and stability analysis results.

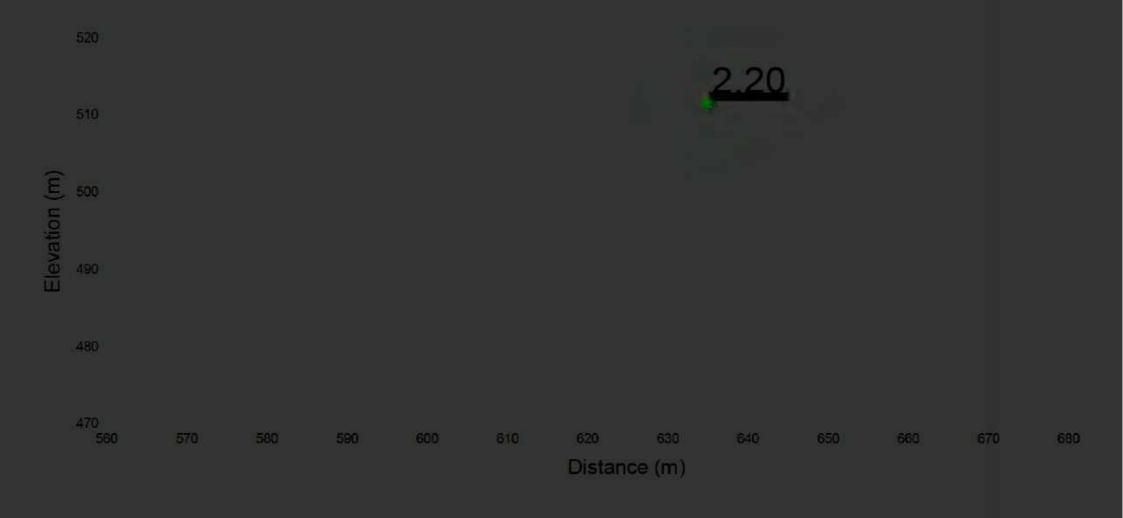
F.6 REFERENCES

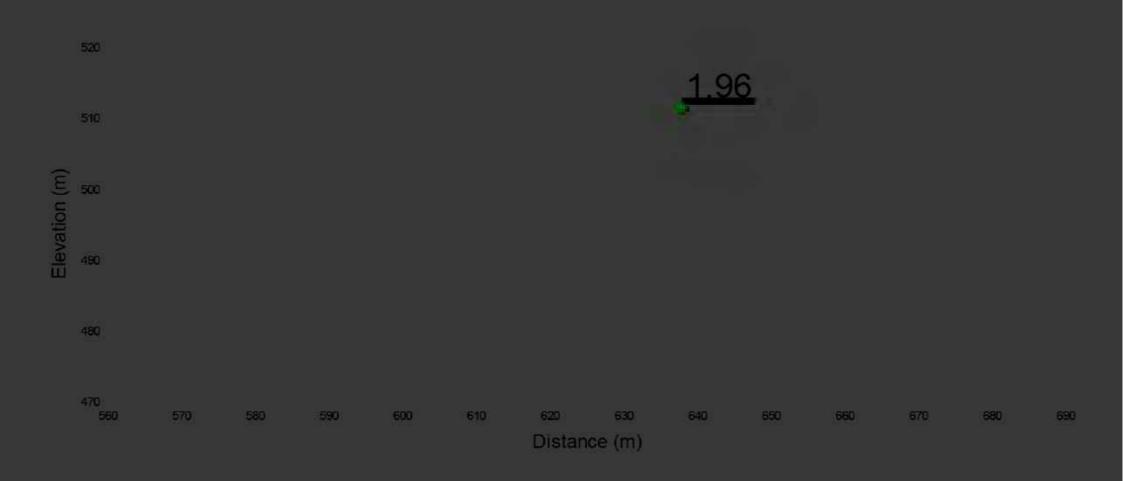
- F1. Australian National Committee on Large Dams (ANCOLD), "Guidelines on Tailings Dams", 2019.
- F2. GEO-SLOPE International Ltd., 'SLOPE/W', 2007.
- Knight Piésold Pty Ltd., TSF CELL C GEOTECHNICAL INVESTIGATION, PE20-01642, December 2020.

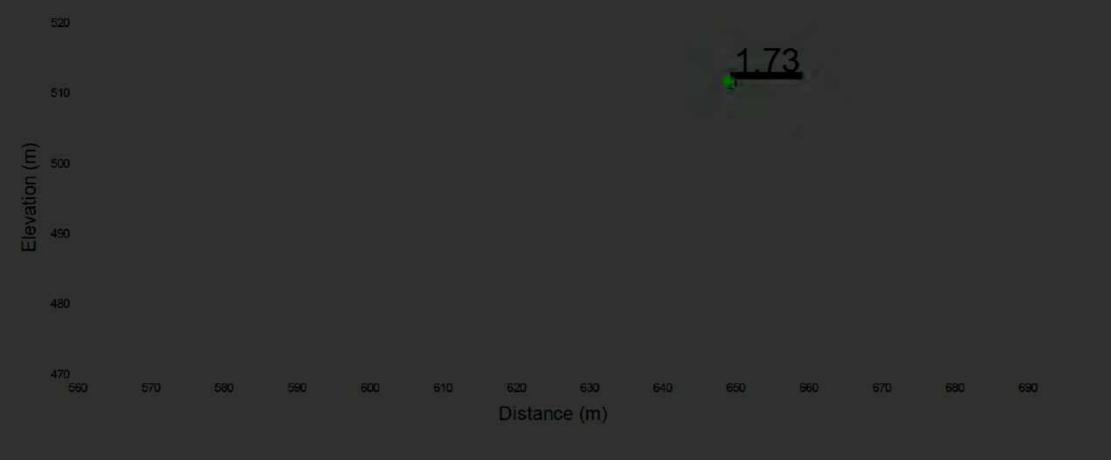


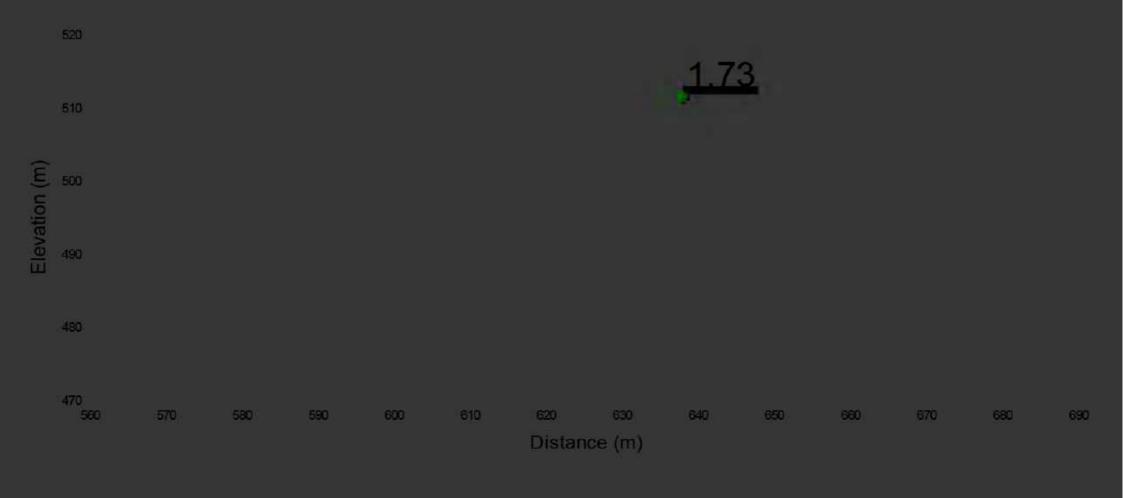
Elevation (m) 560 Distance (m)

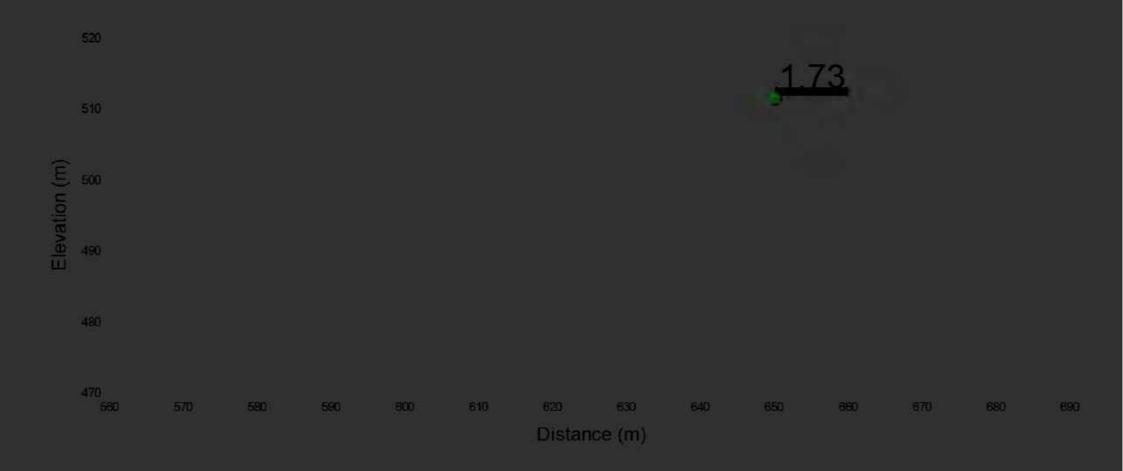


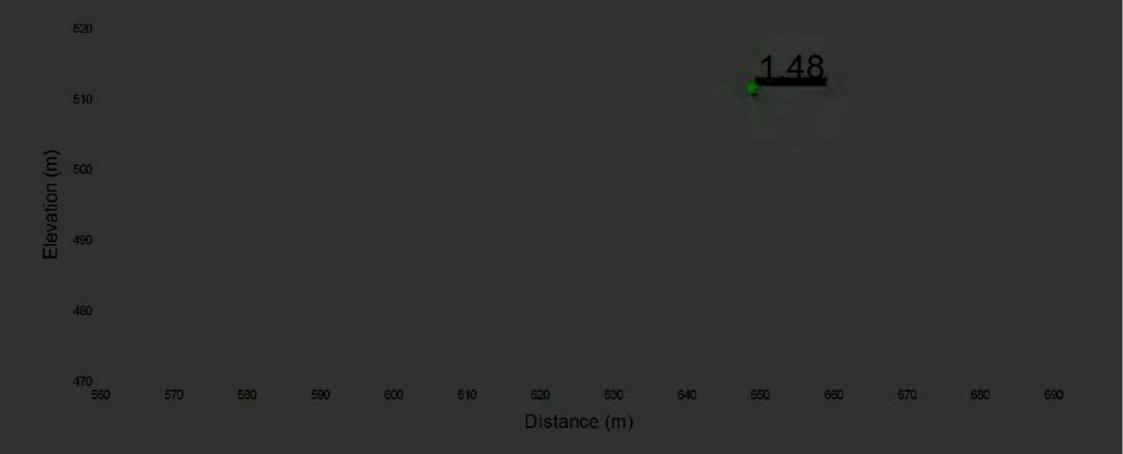












Elevation (m) Distance (m)

L7815/2001/12 Licence Amendment Supporting Attachments

10 Water Studies for TSF Cells C and D (Attachment 8D)

Northern Star Resources Limited

Water studies for TSF Cells C and D

North Eastern Goldfield Operations - 6 Mtpa Expansion Project

Northern Star Resources Limited

Water studies for TSF Cells C and D

North Eastern Goldfield Operations - 6 Mtpa Expansion Project

This report has been prepared on behalf of and for the exclusive use of Northern Star Resources Limited and is subject to and issued with the agreement between Northern Star Resources Limited and Pennington Scott. Pennington Scott accepts no liability or responsibility whatsoever for it in respect of any use or reliance upon this report by any third party.

Copying this report without permission of Northern Star Resources Limited or Pennington Scott is not permitted.

REVISION	ISSUED	DESCRIPTION	
Rev 0	2 August 2021	Issued for Client review	

Northern Star Resources Limited NEGO 6 Mtpa Expansion Project Water Studies for TSF Cells C and D

EXECUTIVE SUMMARY

The Thunderbox mine and Gold Processing Plant lie 90 km north of Leonora along the Goldfields Highway. Northern Star is now seeking to double the throughput capacity of the Plant from 2.9 Mtpa to 6.0 Mtpa from June 2022 over a projected 10 year life of mine.

The Thunderbox Processing Plant produces slurry waste, which is discharged to the nearby Thunderbox Tailings Storage Facility. The TSF currently has two circular integrated tailings cells, Cell A and Cell B. The Expansion Project includes provision to build two additional cells, Cell C and Cell D, to complement the existing cells.

The numerical groundwater model of the mine area was successfully calibrated to replicate two different calibration targets, the observed water levels at a limited number of observation bores at the vicinity the TSF and the pit, and the average flow rates towards the pit sumps over the last five years. In addition, analytical surface water analysis based on the Manning's and Rational methods has used to assess and design appropriate surface water management around the TSF.

The findings of these combined surface and groundwater investigations regarding the cumulative impacts and recommended water design considerations for TSF Cells C and D at Thunderbox are as follows:

- natural catchment runoff from above the Thunderbox mine will need to be diverted around the northern boundary of the new TSF cell. Given the proximity of the Goldfields Highway, a diversion channel will be constructed in this area to minimise the risk of inundating the highway during large storm events;
- Knight Piesold (2021) predicted the possibility of TSF seepage through the toe of the TSF walls. For this purpose, a 0.5 m deep toe drain will be constructed around the perimeter of the TSF to intercept and manage any seepage loss;
- an engineered berm will be constructed between the toe drain and the diversion channel on the northern boundary of the TSF to ensure that there is minimal mixing between the different water qualities in the two drains;
- Base case numerical model simulations suggest that by the time the TSF reaches its
 full height, the water table beneath the TSF walls may rise by up to 10 m, which would
 bring it within 5 m of the ground surface, which is about 480 mAHD. While the
 mounding effects diminish with distance away from the TSF wall, discernible water
 table mounding of up to 0.5 m may extend up to several kilometres from the TSF;
- despite the apparent extensive water table mounding, particle track modelling shows
 that groundwater migration from the TSF through the saprolite weathering profile
 would be slow. So much so that by the end of the 10 year life of mine, seepage from
 the TSF would have travelled less than a kilometre from the TSF;
- groundwater modelling shows that seven (7) interception wells around the periphery
 of the TSF would be an effective solution to mitigate water table mounding and
 contain leakage at a small distance from the TSF, without affecting the regional
 groundwater regime, both in terms of quality and quantity.

In summary, provided TSF Cell C and Cell D are constructed with the proposed engineered surface water and groundwater provisions in this report, Pennington Scott can foresee no unacceptable social or environmental factors that would preclude the grant of Works Approval for the project.

Northem Star Resources Limited NEGO 6 Mtpa Expansion Project Water Studies for TSF Cells C and D

CO	NTE	NTS	
1.	INT	RODUCTION	8
2.	HY	DROGEOLOGICAL SETTING	10
3.	SUI	RFACE WATER MANAGEMENT	14
	3.1	Management of TSF Toe Seepage	
	3.3	Diversion channel to protect Goldfields Highway	
	3.4	Berm for runoff separation	18
4.	GR	OUNDWATER MANAGEMENT	20
	1.1	Groundwater model design and boundary conditions	20
	4.2	Groundwater model calibration	
	4.3	Transient model – predictive simulations	25
	4.5	Interception wells scenario	30
	1.2	Groundwater model sensitivity to Sy	31
	1.3	Groundwater model sensitivity to Kz of the tailings	31
	4.6	Groundwater model assumptions and limitations	31
5.	co	NCLUSIONS	34
	5.1	Recommendations	35
6.	RE	FERENCES	36
LIS	T OI	FIGURES	
N 10 10 10 10 10 10 10 10 10 10 10 10 10		TSF Expansion Design, showing the two additional Cells (C and D) (From Knight F	
Figu	re 2-1	Regional Geology (geology from DMIRS, 2021)	<u>1</u> 1
Figu	re 2-2	Typical saprolite weathering profile	12
Figu	re 2-3	Interpreted base of Saprock surface contours	13
Figu	re 3-1:	Catchments off the TSF and Proposed New TSF Surface Water Infrastructure	15
Figu	re 3-2:	Toe Drain and Diversion Berm Design from Pennington Scott (2017)	15
Figu	re 3-3:	Outlet Drain Design from Pennington Scott (2017)	16
Figu	re 3-4	Local Catchments and Existing TSF Diversion Infrastructure	17
Figu	re 3-5:	Extended TSF creek diversion infrastructure	18
Figu	re 3-6:	Schematic Section through Toe Drain, Berm, and creek diversion channel	19

Northern Star Resources Limited NEGO 6 Mtpa Expansion Project Water Studies for TSF Cells C and D

Figure 4-2 Details of the model mesh along section W-E	. 22
Figure 4-3 Details of the model mesh along section N-S	. 22
Figure 4-4 Observed vs calculated water levels	. 24
Figure 4-5 Calibrated steady-state (average) groundwater levels	. 24
Figure 4-6 model design that shows the configuration of the existing and the new TSF cells	27
Figure 4-7 West – east profiles that show the layer geometry and distribution of groundwater levels (heads) at the beginning and end of TSF operations	
Figure 4-8 Calculated change of water level (mounding) at the end of 10 year simulation	29
Figure 4-9 Modelled particle tracks at the end of 10 years without inception wells	29
Figure 4-10 Modelled particle tracks at the end of 10 years using interception wells	30
Figure 4-11 Mounding using specific yield of 3% and tailings Kz of 0.04 m/day	. 32
Figure 4-12 Mounding using specific yield of 20% and Tailings Kz of 0.04 m/day	. 32
Figure 4-13 Mounding using specific yield of 1% and Tailings Kz of 0.001 m/day	33
Figure 4-14 Mounding using specific yield of 1% and Tailings Kz of 0.0001 m/day	33
LIST OF TABLES	
Table 2-1 Hydraulic Conductivity and Storage Parameter Estimate	11
Table 3-1 Manning Formula Channel Flow Calculation	. 14
Table 4-1 Observed vs calculated water levels	23
Table 4-2 Model calibrated hydraulic properties	25

1. INTRODUCTION

Northern Star Resources Limited (Northern Star) formed after the merger of Northern Star Resources and Saracen Metals Pty Ltd in February 2021. As part of the merger, the North Eastern Goldfields Operations (NEGO), including the Thunderbox, Bannockburn and Kailis gold mines and all associated Groundwater Licences are now operated and owned by Northern Star.

The Thunderbox mine and Gold Processing Plant lie 90 km north of Leonora along the Goldfields Highway. Northern Star is now seeking to double the throughput capacity of the Plant from 2.9 Mtpa to 6.0 Mtpa from June 2022 over a projected 10 year life of mine, referred to hereinafter as the Expansion Project. The Thunderbox Processing Plant produces slurry waste, which is discharged to the nearby Thunderbox Tailings Storage Facility (TSF). The TSF currently has two circular integrated tailings cells, Cell A and Cell B. The Expansion Project includes provision to build an additional two cells, Cell C and Cell D (Figure 1-1). The cumulative environmental concerns arising from construction of the additional TSF Cells are:

- All tailings storage facilities experience some vertical infiltration water loss to the underlying groundwater system. These losses need to be quantified and managed to ensure that there is no unacceptable offsite groundwater migration of TSF water or localised water logging due to groundwater mounding;
- Knight Piesold (2021) anticipate that there will be horizontal seepage losses through the toe of the TSF wall. This seepage needs to be intercepted and managed to ensure that it does not with natural catchment runoff;
- natural catchment runoff from above the Thunderbox mine will need to be diverted around the northern boundary of the new TSF cell. Given the proximity of the Goldfields Highway, the diversion will require special design considerations to ensure that the highway is not inundated during large storm events; and
- water in the toe drain and catchment diversion must be separated to prevent mixing of different water qualities.

Pennington Scott (Groundwater Consultants) has been engaged to undertake to undertake hydrological and hydrogeological studies for the Expansion Project's Works Approval and Mining Proposal.

The contained document is a surface water and groundwater analysis of likely impacts and recommended mitigation strategies for a proposal to add two additional TSF Cells at NEGO.

Page 8

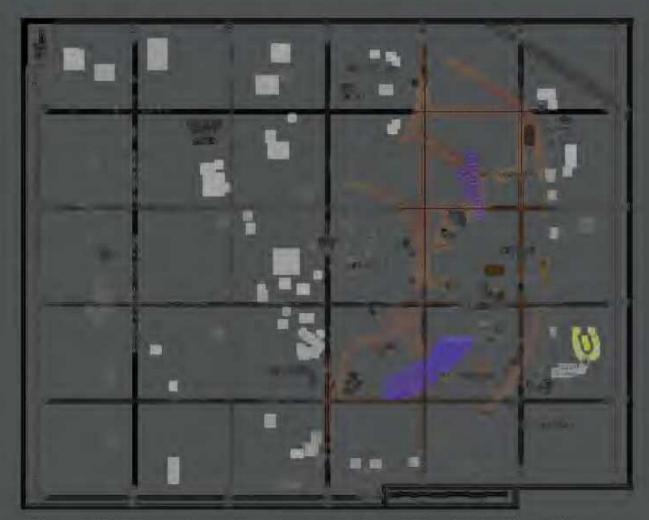


Figure 1-1 TSF Expansion Design, showing the two additional Cells (C and D) (From Knight Piesold, 2021)

2. HYDROGEOLOGICAL SETTING

Pennington Scott (2021) contains a comprehensive description of the geological setting beneath the NEGO tenements. This Section is a summary of geological aspects relevant to the new TSF Cells.

The regional geology is a heavily faulted and sheared north-trending accretionary arc sequence along the boundary of the Kurnalpi and Kalgoorlie Terranes, in the Eastern Goldfields Superterrane of the Yilgarn Craton. The region comprises a mix of faulted and sheared felsic and mafic igneous and volcanic rocks intruded by felsic porphyry that from part of the Archaean Yandal Greenstone Belt (Figure 2-1).

Primary aquifer storage and permeability characteristics in the crystalline Archaean Yandal Greenstone Belt rocks is virtually non-existent. Groundwater occurs in the secondary porosity developed in fracture and fault defects, or within the deep saprolite weathering profile. Figure 2-2 shows a typical saprolite weathering profile developed across the region, which is described below.

The upper saprolite (also known as the pallid zone; the smectite zone; or the zone of strong oxidation) refers to the zone immediately beneath the ferruginous hard cap where the rock has undergone complete chemical decomposition into heavy textured clay minerals, which may display remnant rock textures. The upper saprolite is mostly unsaturated but can form a slow seepage zone where water is present.

The transition into Lower Saprolite (the zone of joint oxidation) is characterised by a change from heavy textured clay to soft, decomposed, friable rock 10–20 m thick. The Lower Saprolite zone is typically the most reliable water target in a fractured rock environment.

The saprock (the zone of broken fresh rock between the Lower Saprolite and the hard fresh rock) can also contain open water bearing defects, particularly within faults, shears, and joints. These defects characteristically act as high permeability groundwater conduits but contain virtually no intrinsic groundwater storage.

Figure 2-3 shows the interpreted base of the Lower Saprolite based on Northern Star's drilling data together with geological information from the Geological Survey of Western Australia and topographic information from the SRTM 1-sec dataset (Farr and Kobrick, 2000).

The hydraulic parameters in the fractured rock aquifer around Thunderbox were derived from several phases of test pumping. Bore tests by Hydro-Resources (2000, 2002) and Pennington Scott (2012, 2015) provide a local transmissivity (T) estimate of between 2 and 60 m²/day, with a median T of about 12 m²/day and median hydraulic conductivity (K) of 0.6 m/day. It is assumed that the T and K are largely derived from the Lower Saprolite and saprock, with the upper saprolite and fresh rock featuring significantly lower T and K values. It was not possible to obtain a field measurement of the specific yield (Sy), but the commonly accepted empirical value for Sy of the Lower Saprolite in the goldfields is between 0.5% and 1% (Johnson *et al.*, 1999). The estimated hydraulic parameters are provided in Table 2-1.

Hydraulic parameters for the TSF are provided in Knight Piesold (2017), although there are some inconsistencies in the document, with hydraulic conductivity of the slurry material

measured at 0.04 m/day (4 \times 10-7 m/s), and a horizontal conductivity listed as 0.001 m/day (1 \times 10-8 m/s). Seepage analysis indicated that any water lost from the TSF would be captured in the toe drain. For this analysis Knight Piesold (2021) assumed the vertical conductivity of the slurry material to be 1/10th the horizontal conductivity and scenarios using both values are assessed.

Table 2-1 Hydraulic Conductivity and Storage Parameter Estimate

Aquifer Zone	K (m/day)	Sy	Ss
Upper Saprolite	0.1	0.1%	
Lower Saprolite and Saprock	0.6	1%	0.01%
Fresh Rock	0.0001	0.01%	0.01%

Figure 2-1 Regional Geology (geology from DMIRS, 2021)



Figure 2-2 Typical saprolite weathering profile

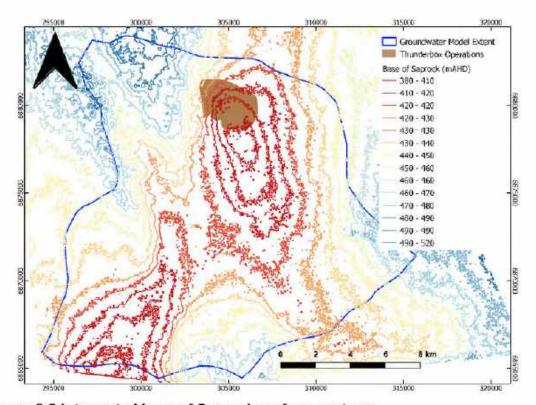


Figure 2-3 Interpreted base of Saprock surface contours

3. SURFACE WATER MANAGEMENT

The Expansion Project includes provision to build two additional cells, Cell C and Cell D, on the eastern side of the existing TSF Cell A and Cell B. The cumulative surface water management issues arising from construction of the additional TSF Cells are:

- Knight Piesold (2021) anticipate that there will be horizontal seepage losses through the toe of the TSF wall. This seepage needs to be intercepted and managed to ensure that it does not with natural catchment runoff;
- natural catchment runoff from above the Thunderbox mine will need to be diverted
 around the northern boundary of the new TSF cell. Given the proximity of the
 Goldfields Highway, the diversion will require special design considerations to ensure
 that the highway is not inundated after every large storm event; and
- toe drains and catchment diversions must be separated by an engineered berm to prevent mixing of different water qualities.

3.1 Management of TSF Toe Seepage

Knight Piesold (2021) highlighted the potential horizontal seepage of tailings water through the toe of the TSF wall. For this purpose, Pennington Scott (2017) provided engineering design recommendations for the toe drain along the northern waste dump and the existing TSF Cell A and Cell B, which has the dual purpose of capturing seepage and directing water flow off the TSF to a sediment trap and then along an armoured outlet drain to the local natural drainage.

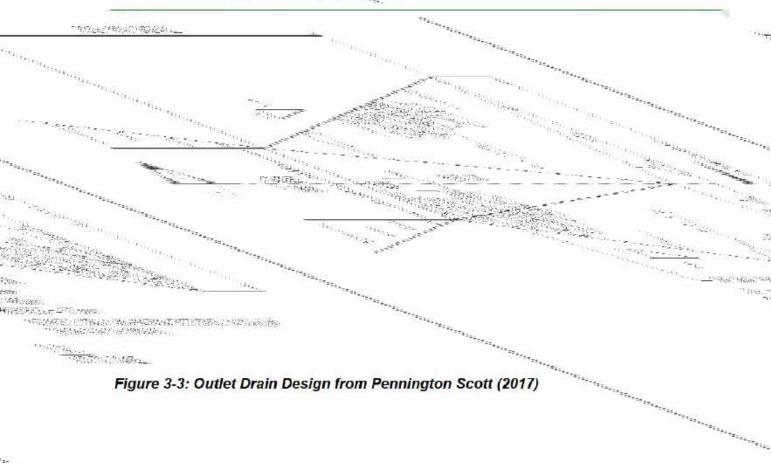
The proposed Cell C and Cell D would require the toe drain to be extended around the eastern and southern sides of the TSF as shown in Figure 3-2. Given the low fall over the proposed drain alignment, the toe drain would be susceptible to being overwhelmed by runoff off the TSF walls during extreme rainfalls. For this reason, Pennington Scott recommend that engineered silt trap/overflow structures be located around the toe drain. The number and location of these silt traps is optimised using the Manning's channel flow calculation.

Table 3-1 summarises the channel flow calculations for the 10-year ARI, 2 hour storm duration based on the concentration time using the Rational Equation. From this approach, Pennington Scott recommend the extended toe drain should have similar dimensions to the existing toe drain and sediment trap (Figure 3-2), and outlet drain (Figure 3-3) described in Pennington Scott (2017), being a dozer-cut drain along an alignment off-set about 15 m from the toe of the TSF, with a nominal 4 m base-width, 2H:1V side slopes, and a minimum depth of 0.5 m.

Table 3-1 Manning Formula Channel Flow Calculation

Point	Chainage (m)	Local catchment (ha)	Channel Slope (%)	Roughness Co-efficient	Rainfall (mm/hr)	Flow Rate (m ³ /s)	Flow Depth (m)
Α	0				- 19		
В	800	5	0.7	0.9	36.7	0.9	0.22
С	1810	6.8	0.2	0.9	36.7	1.3	0.25
D	2950	8.6	0.1	0.9	36.7	1.6	0.3
E	3615	5	0.6	0.9	36.7	0.9	0.23

Figure 3-1: Catchments off the TSF and Proposed New TSF Surface Water Infrastructure


Figure 3-2: Toe Drain and Diversion Berm Design from Pennington Scott (2017)

Northem Star Resources Limited

NEGO 6 Mtpa Expansion Project

Marshall Creek Water Supply Area – H3 Hydrogeological Report

3.3 Diversion channel to protect Goldfields Highway

The new TSF cells will in part be constructed over an apparent small surface drainage. This drainage line would need to be diverted around the northern side of the proposed new TSF cells and then back into its natural drainage path on the eastern side of the TSF.

The alignment of the Goldfields Highway is within 300 m of the proposed northern boundary the TSF. Given the relatively flat terrain, the creek diversion would need to be contained within an engineered diversion channel to minimise the risk of inundating the Goldfields Highway during high rainfall events.

Figure 3-4 shows that the catchment above the diversion, the Northwestern Subcatchment, has a surface area of 420 ha. Pennington Scott calculate that a 1 hr duration 10 year ARI storm (i.e. based on a calculated 1 hour concentration time) would produce 30 mm of rain and result in a peak flow of about 14 kL/sec at the base of the catchment. We recommend that a 10 year recurrence flow could be contained within a trapezoidal diversion channel, 6m wide by 1 m deep, with a side slope of 2H:1V.

To minimise erosion and siltation, the channel base should have a constant fall of 0.5% between point A' and B' and should terminate in a sedimentation trap with an armoured outlet drain similar to Figure 3-3.

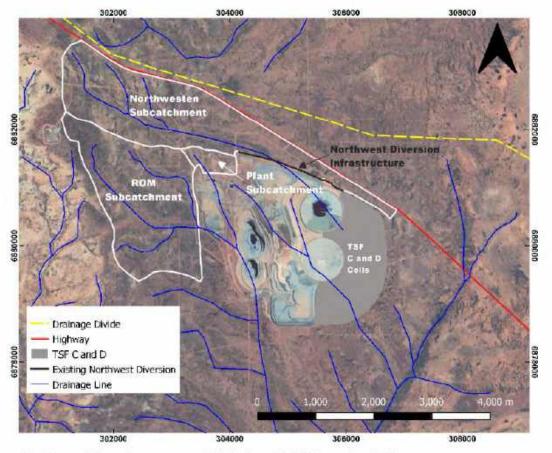


Figure 3-4 Local Catchments and Existing TSF Diversion Infrastructure

3.4 Berm for runoff separation

Seepage water from the TSF toe drain should not be allowed to mix with natural catchment runoff in the Diversion Channel. For this purpose, the toe drain and the diversion channel should be physically separated by a compacted earth berm (the Berm). Pennington Scott recommend that the Berm would start near the pipeline access track near the northwest corner of the TSF (Figure 3-5) and continue past the sediment trap near point B.

A schematic cross section through the Berm is shown in Figure 3-6. The dimensions shown are schematic, although vertical height of the berm should be maintained at 1m to lower the risk of over-topping. Material excavated from the toe drain should be moisture conditioned, placed in layers and dozer compacted to form a catchment diversion Berm along the northern edge of the Toe Drain.

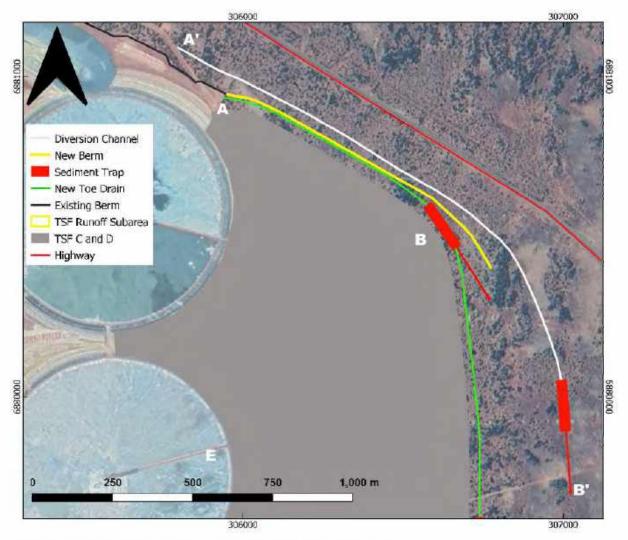


Figure 3-5: Extended TSF creek diversion infrastructure

Figure 3-6: Schematic Section through Toe Drain, Berm, and creek diversion channel

4. GROUNDWATER MANAGEMENT

The expansion of the TSF would cause vertical leakage of tailings water through the floor of the TSF and contribute to mounding of the water table in the underlying saprolite aquifer, which in turn would enhance migration of TSF seepage within the local aquifer system.

A regional water table analysis suggests that most of the seepage from the existing TSF cells currently flows to the west towards the pits, where it is captured by sumps and recycled in the processing plan and back to the TSF. Detailed measurements over the last five years suggest the average pumping rate from the sumps is about 2 200 KL/day or around 820 ML/year.

In this Section, a 3D numerical groundwater model is developed to:

- evaluate the likely impact on the local groundwater regime from inclusion of the two new TSF cells; and
- determine the likely flow path of any seepage from the expanded TSF.

The model is built using the "FEFLOW" Finite Element numerical tool. This is an industry standard numerical environment that meets all the functional and performance criteria required to capture and successfully simulate the dynamics and characteristics of the existing and the proposed TSF and the associated mining operations.

1.1 Groundwater model design and boundary conditions

The model domain covers an area of about 18 x 20 km and extends to the surrounding surface water divides, at significant distance from the mining pit and the TSFs. The north eastern boundary is closer to the TSF (about 2 km) whereas the other boundaries extend about 10 to 15 km form the centre of the mining works. In this type of hydrogeological environments, groundwater divides are assumed to coincide with the divides of the surface water catchments which are commonly treated as no-flow boundaries.

Groundwater level contours indicate that regional groundwater flow occurs from the NE to the SW, from groundwater heads of about 490 m AHD to 460 m AHD. Local variations are anticipated at the vicinity of pumping wells (**Figure 4-1**) which, despite of local variations follow the regional gradients. Near the TSFs, water levels are at about 480 m AHD with the current depth to water level at about 10 to 15 m below ground. The total area of the model domain is 274 km².

An adaptive finite element mesh was designed with element size varying from about 15 m within the TSF and the pits, where higher resolution is required, expanding gradually to about 500 m towards the periphery of the model area. For better mesh quality and numerical stability, an "advancing front" mesh generator was used for the mesh design which resulted in more equilateral elements, with zero Delaunay violations over the entire mesh.

Figure 4-1 Model domain and boundary conditions

The northeast (AB), southeast (BC) and the western (DA) boundaries of the model were all treated as no-flow boundaries as they coincide with the surface and groundwater divides. The southwestern boundary (CD) was treated as a discharge boundary with fixed-head water levels of 460 mAHD.

The model area was spatially discretised into 39,687 elements per layer, 19,915 nodes per slice, and subdivided vertically into 6 model layers with total of 238,122 elements. Details of the model mesh in the vertical direction are shown in selected section in Figure 4-2 and Figure 4-3.

- Model layer 1 was used to simulate separately the hydraulic properties of the TSFs and pinches out further away;
- Model layer 2 represents the saprolite zone. Due to the lack of data, a single layer was used to simulate the Saprolite without any separation into upper or lower zone;

Page 21

Model layer 3 represents the saprock; and

 Model layers 4 to 6 represent the fresh rock that, for numerical stability, was subdivided into 3 model layers with increasing thickness with depth.

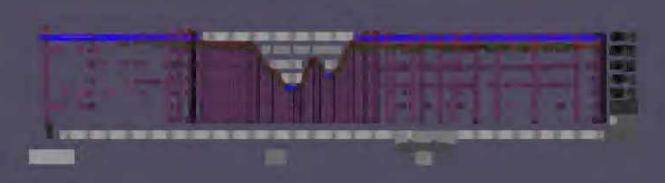


Figure 4-2 Details of the model mesh along section W-E

Figure 4-3 Details of the model mesh along section N-S

4.2 Groundwater model calibration

The available datasets contain two types of calibration targets; water levels measured at observation wells, and flow rates at the pit sumps. Available water level measurements are subdivided into measurements at observation wells (blue dots) and dynamic water level measurements that were conducted at pumping wells after or at the duration of pumping. As shown in the map above the latter present high variations and inconsistencies even at closely separated pumping wells and are not deemed directly suitable for model calibration. Hence, as primary water level calibration targets only the average water levels from the standard observation bores were used.

Steady state calibration

Due to the lack of suitable transient datasets, the model was calibrated with steady state calibration targets focusing mostly on reliable observation data from observation bores near the pit and the TSF. Calibrated parameters were the hydraulic conductivities of the Upper saprolite and the Saprock as well as the vertical hydraulic conductivity of the existing TSF tailing. An additional calibration target was the flow rates towards the pit sumps which were simulated through seepage faces. The results in Table 4-1 and Figure 4-4 suggest a good empirical matching was achieved between observed and calculated values at the selected calibration targets. Also, the simulated flow rate towards the pit sumps was about 2,200 KL/day which is close to the average rates observed over the last five years. Average water level from steady state calibration is shown in Figure 4-5.

Table 4-1 Observed vs calculated water levels

Bore ID	Observed	Calculated	Difference	
TSFMB4	478.96	476.93	2.03	
TSFMB5	476.43	478.30	-1.87	
TSFMB6	479.5	480.17	-0.67	
TSFMB7d	475.48	476.61	-1.13	
TSFMB8d	479.74	478.64	1.10	
Madras 3	472.82	471.73	1.09	

Figure 4-4 Observed vs calculated water levels



Figure 4-5 Calibrated steady-state (average) groundwater levels

Initial calibration attempts, by trial and error, indicated a tendency towards perched conditions between the water level in the existing TSF and the underlying groundwater level with the depth to the groundwater at the observation bores (TSFMB series) being at about 10 to 15 m. Simulation of the perched conditions between the TSF and the aquifer was conducted by making use of the variably saturated Richard's option of the model. The model calibration was sensitive to the leakage rate from the existing TSF that was controlled from the vertical hydraulic conductivity of the tailings. Calibrated hydraulic parameters are shown in **Table 4-2**. The low value of the vertical hydraulic conductivity of the existing TSF is more likely attributed to the tailings consolidation. Vertical anisotropy (K_Z/K_R) of 0.1 was used for the Saprolite and the saprock, whereas equal values of K_R and K_Z were used in the bedrock due to the occurrence of structural heterogeneities and the fracture network. Nearly zero rainfall of 0.5 mm/year was adopted based on the chlorinity estimation approach in Pennington Scott (2017).

Table 4-2 Model calibrated hydraulic properties

zone	Kh [m/day]	Kz[m/day]	Ss [-]	Sy [-]
Saprolite	1	0.1	1 x 10 ⁻⁵	1%
Saprock	0.05	0.005	1 x 10 ⁻⁵	1%
Bedrock	0.0003	0.0003	1 x 10 ⁻⁵	1%
Tailings (old TSF)	0.01	0.004	1 x 10 ⁻⁵	1%
Tailings (new TSF)	0.4	0.04	1 x 10 ⁻⁵	1%

4.3 Transient model - predictive simulations

The addition of the two new TSF cells was formulated into the model layer 1 by inserting the geometry of the cell at the appropriate location and modifying the slice geometry as per the TSF design geometry (Figure 4-7). The maximum height of the new TSF, and the corresponding ponding area (highlighted polygons at the centre of the TSF) was set at 505 mAHD which is similar to the existing TSF.

Based on the design parameters, the total simulation time of the model was 10 years, starting with initial water level conditions form the steady state calibration (Figure 4-5). A boundary condition of time varying specified head was assigned over the two ponding areas in the middle of the TSF that ranged from the elevation of about the current land surface (about 485 mAHD) to the final water level that was assumed to lie at the top of the new TSF (about 505 mAHD). The base case vertical hydraulic conductivity of the tailings being 0.04 m/day.

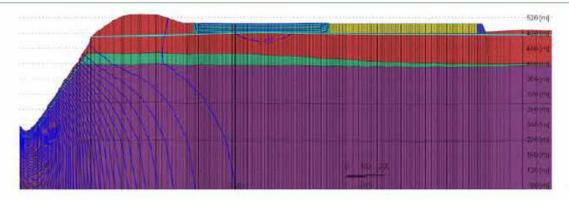
The new TSF cell is designed for a total operation period of 10 years. The base model scenario was the simulation of the effect of the gradual water level rise within the new TSF from 485 to 505 mAHD, and the changing water levels and directions of groundwater flow in the vicinity of the TSF were calculated.

Simulation results show that at the full height of the TSF, groundwater mounding in the aquifer in the vicinity of the TSF may be up to 10 m, bringing the water table within 5 m of the land surface.

Direction of groundwater flow was modelled using a "particle tracking" approach, where the trajectories and distances travelled by theoretical particles released into the groundwater beneath the TSF are simulated over the 10 year life of mine. Figure 4-9 shows the calculated

Northem Star Resources Limited NEGO 6 Mtpa Expansion Project Marshall Creek Water Supply Area – H3 Hydrogeological Report

particle tracks over 10 years without the use of interception wells. Reference to this figure suggests that particles would reach a distance of about a kilometre from the edge of the TSF. Beyond 10 years, particles would continue to migrate following the groundwater gradients towards the edge of model domain.


a) Before the addition of the new TSF cell.

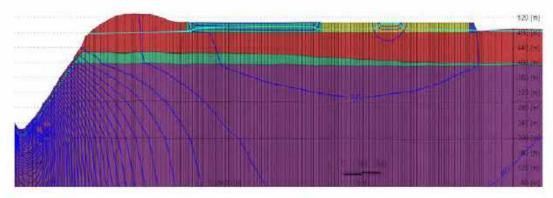

b) After the addition of the new TSF cell.

Figure 4-6 model design that shows the configuration of the existing and the new TSF cells

Northem Star Resources Limited NEGO 6 Mtpa Expansion Project Marshall Creek Water Supply Area – H3 Hydrogeological Report

a) Initial conditions (sim. Time =0 days)

b) After 10 years of operation (sim. Time 3650 days)

Figure 4-7 West – east profiles that show the layer geometry and distribution of groundwater levels (heads) at the beginning and end of TSF operations

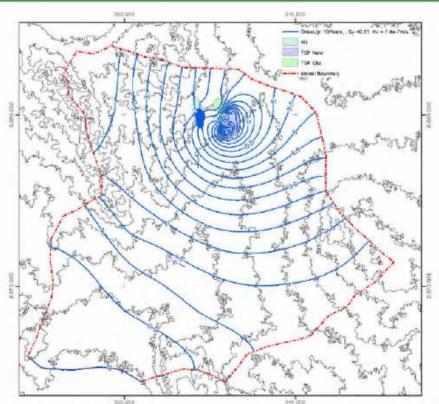


Figure 4-8 Calculated change of water level (mounding) at the end of 10 year simulation

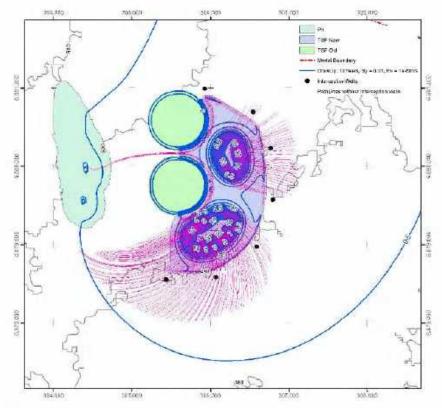


Figure 4-9 Modelled particle tracks at the end of 10 years without inception wells

4.5 Interception wells scenario

A mitigation scenario with interception wells was setup to simulate the efficiency of a series of pumping wells installed along the periphery of the TSF to capture the particle tracks in **Figure 4-10**.

This scenario involves the installation of seven (7) interception wells that are drilled to the base of the Saprock (slice 4 of the model) at an average bore spacing of about 650 m. The water level in each bore is dewatered to the base of the Saprock, simulating the operation of Air well recovery pumps, or similar. The simulated average bore pumping rate is equivalent to about 300 KL/day, albeit that typical saprolite bore yields may range between 50 and 500 kL/day.

Figure 4-10 shows the simulated particle tracks with the seepage recovery bores operating. Reference to this figure suggests that the recovery wells would effectively capture any seepage migration from the eastern side of the new TSF cells. Continued operation of the existing TSF Cells (Cell A & Cell B) would create a groundwater mound that acts as a hydraulic barrier, inhibiting movement of the particles from the new Cell C & Cell D directly towards the pit.

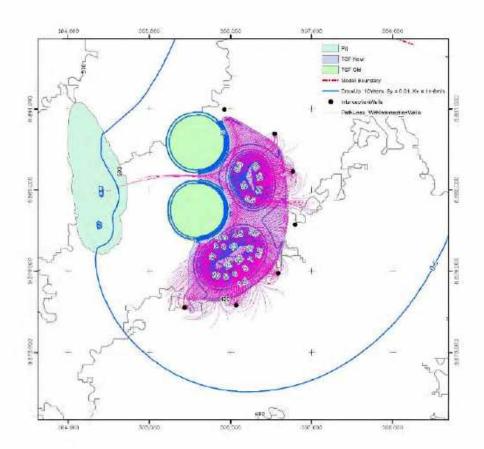


Figure 4-10 Modelled particle tracks at the end of 10 years using interception wells

1.2 Groundwater model sensitivity to Sy

The simulation scenarios presented in the previous sections, demonstrate the more likely predictions that were calculated based on the calibrated model parameters (**Table 4-2**) making use of specific yield of 1% and vertical hydraulic conductivity (**Kz**) of the tailings in the new TSF, being 0.04 m/day.

As part of the prediction sensitivity analysis, which is also referred to as uncertainty analysis, additional model runs were conducted to evaluate the extent of the calculated mounding at lower values of tailings conductivity (**Kz**) and higher values of specific yield (**Sy**).

The comparison of the initial calculated mounding in Figure 4-8, with the results sensitivity analysis in Figure 4-11 and Figure 4-12 with specific yield values ranging from 1% to unreasonably an high value of 20%. The results show that the model has very little sensitivity to Sy, with the difference in mounding between the two extremes amounting to less than 2 m in the vicinity of the TSF (i.e. lower water table mounding with increasing Sy).

1.3 Groundwater model sensitivity to Kz of the tailings

The decrease of the vertical hydraulic conductivity of the tailings though, either by making use of lining material in the TSF or due to consolidation of the tailings for example, will have significant effect both on the extend and magnitude of the mounding by "containing" the mounding within the boundaries of the TSF.

However, there are various uncertainties that cannot be captured at this stage, such us the heterogeneity and anisotropy of the bedrock material as well as details regarding the spatial and temporal variation of the hydraulic properties of the tailings, which their values seem to have a positive (retaining) effect on the spatial spread and magnitude of mounding.

The calculated groundwater level mounding at the base case scenario is shown in **Figure 4-13**. Reducing the vertical hydraulic conductivity of the tailings from 0.001 to 0.0001 m/day reduces the both the magnitude and lateral extent of mounding (**Figure 4-14**).

4.6 Groundwater model assumptions and limitations

The model was developed based on calibrated hydraulic properties by making use of a limited number of observation bores, located mostly in the vicinity of the TSF. Hence the accuracy and validity of the model cannot be verified at higher distances away from the TSFs.

Salinity effects on groundwater flow were not simulated in this model, as variable density modelling is beyond the scope of this work. However, this is not expected to affect the modelling results presented in this report, since saline to hypersaline water is primarily used for processing.

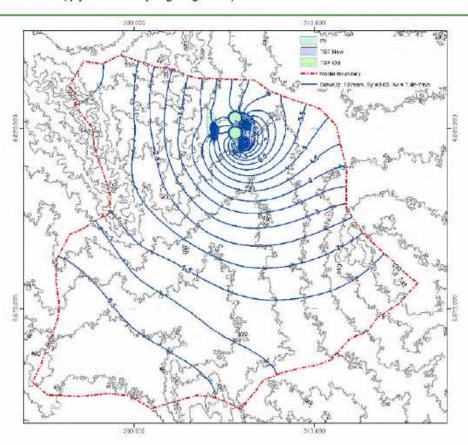


Figure 4-11 Mounding using specific yield of 3% and tailings Kz of 0.04 m/day

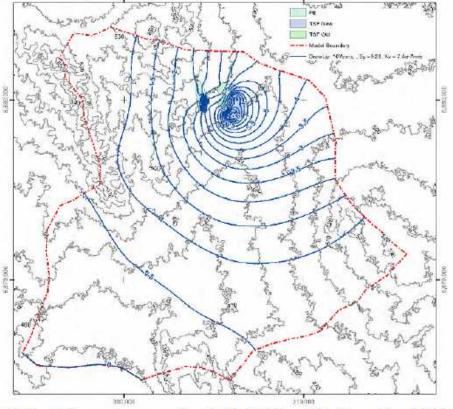


Figure 4-12 Mounding using specific yield of 20% and Tailings Kz of 0.04 m/day

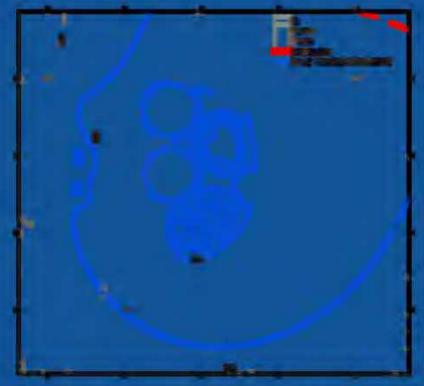


Figure 4-13 Mounding using specific yield of 1% and Tailings Kz of 0.001 m/day

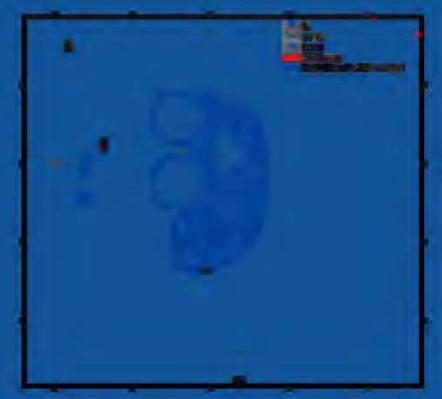


Figure 4-14 Mounding using specific yield of 1% and Tailings Kz of 0.0001 m/day

5. CONCLUSIONS

The Thunderbox mine and Gold Processing Plant lie 90 km north of Leonora along the Goldfields Highway. Northern Star is now seeking to double the throughput capacity of the Plant from 2.9 Mtpa to 6.0 Mtpa from June 2022 over a projected 10 year life of mine.

The Thunderbox Processing Plant produces slurry waste, which is discharged to the nearby Thunderbox Tailings Storage Facility. The TSF currently has two circular integrated tailings cells, Cell A and Cell B. The Expansion Project includes provision to build two additional cells, Cell C and Cell D, to complement the existing cells.

The numerical groundwater model of the mine area was successfully calibrated to replicate two different calibration targets, the observed water levels at a limited number of observation bores at the vicinity the TSF and the pit, and the average flow rates towards the pit sumps over the last five years. In addition, analytical surface water analysis based on the Manning's and Rational methods was used to assess and design appropriate surface water management around the TSF.

The findings of these combined surface and groundwater investigations regarding the cumulative impacts and recommended water design considerations for TSF Cells C and D at Thunderbox are as follows:

- natural catchment runoff from above the Thunderbox mine will need to be diverted around the northern boundary of the new TSF cell. Given the proximity of the Goldfields Highway, a diversion channel will be constructed in this area to minimise the risk of inundating the highway during large storm events;
- Knight Piesold (2021) predicted the possibility of TSF seepage through the toe of the TSF walls. For this purpose, a 0.5 m deep toe drain will be constructed around the perimeter of the TSF to intercept and manage any seepage loss;
- an engineered berm will be constructed between the toe drain and the diversion channel on the northern boundary of the TSF to ensure that there is minimal mixing between the different water qualities in the two drains;
- Base case numerical model simulations suggest that by the time the TSF reaches its
 full height, the water table beneath the TSF walls may rise by up to 10 m, which would
 bring it within 5 m of the ground surface, which is about 480 mAHD. While the
 mounding effects diminish with distance away from the TSF wall, discernible water
 table mounding of up to 0.5 m may extend up to several kilometres from the TSF;
- despite the apparent extensive water table mounding, particle track modelling shows
 that groundwater migration from the TSF through the saprolite weathering profile
 would be slow. So much so that by the end of the 10 year life of mine, seepage from
 the TSF would have travelled less than a kilometre from the TSF;
- groundwater modelling shows that seven (7) interception wells around the periphery
 of the TSF would be an effective solution to mitigate water table mounding and

contain leakage at a small distance from the TSF, without affecting the regional groundwater regime, both in terms of quality and quantity.

In summary, provided TSF Cell C and Cell D are constructed with the proposed engineered surface water and groundwater provisions in this report, Pennington Scott can foresee no unacceptable social or environmental factors that would preclude the grant of Works Approval for the project.

5.1 Recommendations

All surface water analyses conducted within this document were based on coarse regional STRM elevation data (Farr and Kobrick, 2000), correlated with more detailed local scale level survey data from Knight Piesold (2021). The engineering design did not include a site walk over of the channel alignment. Prior to construction works, Pennington Scott recommend that our civil engineer, Alasdair Lowry, conduct a walk over the alignment to verify the location and design of the channel and silt trap infrastructure in order to minimise erosion and siltation risks.

6. REFERENCES

- BUREAU OF METEOROLOGY 2016, Design Rainfall Data System
- FARR, T. G., AND M. KOBRICK, 2000, Shuttle Radar Topography Mission (SRTM) 1-sec digital elevation model
- KNIGHT PIESOLD, 2021, Tailings Storage Facility Expansion Design Update (42 Mt), Report for Saracen Metals Pty Ltd, 406p.\
- JOHNSON, S. L., COMMANDER, D. P. & O'BOY, C. A. 1999, Groundwater resources of the Northern Goldfields, Western Australia: Water and Rivers Commission, Hydrogeological Record Series, Report HG 2, 57p.
- HYDRO-RESOURCES, 2000, Exploratory & Test Dewatering Bore Drilling and Hydraulic Testing of Bores DWB01 & DWB02. Thunderbox Project Windarra, Western Australia. Report for Forrestania Gold NL.
- HYDRO-RESOURCES, 2002, Exploratory & Test Dewatering Bore Drilling and Hydraulic Testing of Bores TP7, TP4, TP5, & TP6. Roadside Ultramafic Prospect Windarra, Western Australia. Report for Forrestania Gold NL.
- PENNINGTON SCOTT 2012, Whirling Dervish Underground, Dewatering Investigation, Report for Saracen Mineral Holdings. Unpublished
- PENNINGTON SCOTT 2015a, Water Audit of Bores and Waterloo Mine, NEGO, Report for Saracen Metals Pty Ltd. Unpublished
- PENNINGTON SCOTT 2015b: NEGO Hydrogeological Scoping Study, SAR 2094 TM Rev 1.
- PENNINGTON SCOTT 2017, NEGO Revised Northern Waste Rock Dump Extension Surface Water Management, Technical Memorandum for Saracen Metals Pty Ltd, 13p.
- PENNINGTON SCOTT 2020, TBO D Zone Expansion Surface Water Management West Dump Extension, Technical Memorandum for Saracen Metals Pty Ltd, 14p.

11 Proposed Fee Calculation (Attachment 10)

The second secon	instrument No.	
Amendment application fee calculator (effective as of 1 July 2022)	Unit value (\$)	13.60
Categories	Units	Fee
5 - Processing or beneficiation of metallic or non-metallic ore: More than 5 000 000 tonnes per year	450	\$6,120.00
		\$0.00
		\$0.00
	0	\$0.00
	0	\$0.00
	0	\$0.00
		\$0.00
		\$0.00
	0	\$0.00
Note: Amendment fee is determined by the category with the largest fee units	Fee Payable	\$6,120.00

12 References

- Botanica Consulting (Botanica 2025). Thunderbox Project Targeted Flora and Fauna Survey. Unpublished report prepared for Northern Star Resources Ltd, March 2025.
- Department of Planning, Lands and Heritage (DPLH 2025). Aboriginal Cultural Heritage Inquiry System.

 Department of Planning, Lands and Heritage.

 https://espatial.dplh.wa.gov.au/ACHIS/index.html?viewer=ACHIS (accessed 04 August 2025)
- Knight Piésold Consulting (Knight Piésold 2021). Thunderbox Gold Mine Tailings Storage Facility Cell C and Cell D Permitting Design. Unpublished report prepared for Northern Star Resources Ltd, July 2021.
- Knight Piésold Consulting (Knight Piésold 2025). Thunderbox Gold Project Tailings Storage Facility Life of Mine Assessment. Unpublished memorandum prepared for Northern Star Resources Ltd, July 2025.
- Pennington Scott (2021). Water Studies for TSF Cells C and D North Eastern Goldfield Operations 6 Mtpa Expansion Project. Unpublished report prepared for Northern Star Resources Ltd, August 2021.